open Printf (** http://bgb.bircd.org/pandocs.htm#cpuregistersandflags http://gameboy.mongenel.com/dmg/lesson1.html *) type registers = { mutable a : char; (* accumulator *) mutable f : char; (* flags *) mutable b : char; mutable c : char; mutable d : char; mutable e : char; mutable h : char; mutable l : char; mutable sp : int; (* stack pointer *) mutable pc : int; (* program counter *) } type flags = { mutable z : bool; (* zero *) mutable n : bool; (* substraction *) mutable h : bool; (* half-carry *) mutable c : bool; (* carry *) } type t = { reg : registers; flag : flags; mutable cycles : int; } let print_cpu_state cpu = printf "[Cpu state] Registers:\n"; printf "[Cpu state] \tA: 0x%02X \tF: 0x%02X\n" (int_of_char cpu.reg.a) (int_of_char cpu.reg.f); printf "[Cpu state] \tB: 0x%02X \tC: 0x%02X\n" (int_of_char cpu.reg.b) (int_of_char cpu.reg.c); printf "[Cpu state] \tD: 0x%02X \tE: 0x%02X\n" (int_of_char cpu.reg.d) (int_of_char cpu.reg.e); printf "[Cpu state] \tH: 0x%02X \tL: 0x%02X\n" (int_of_char cpu.reg.h) (int_of_char cpu.reg.l); printf "[Cpu state] \tPC: 0x%04X\n" cpu.reg.pc; printf "[Cpu state] \tSP: 0x%04X\n" cpu.reg.sp; printf "[Cpu state] Flags:\n"; printf "[Cpu state] \t ZNHC\n"; let z = if cpu.flag.z then 1 else 0 in let n = if cpu.flag.n then 1 else 0 in let h = if cpu.flag.h then 1 else 0 in let c = if cpu.flag.c then 1 else 0 in printf "[Cpu state] \t[%d%d%d%d]\n" z n h c (** http://bgb.bircd.org/pandocs.htm#powerupsequence *) let init_registers = { a = '\x00'; f = '\x00'; b = '\x00'; c = '\x00'; d = '\x00'; e = '\x00'; h = '\x00'; l = '\x00'; sp = 0xFFFE; pc = 0x0100; } let init_flags = { z = false; n = false; h = false; c = false } let init_cpu = { reg = init_registers; flag = init_flags; cycles = 0 } let update_flag_reg cpu = let z = if cpu.flag.z then 0b10000000 else 0 in let n = if cpu.flag.n then 0b01000000 else 0 in let h = if cpu.flag.h then 0b00100000 else 0 in let c = if cpu.flag.c then 0b00010000 else 0 in cpu.reg.f <- char_of_int @@ z + n + h + c let inc_pc cpu count = cpu.reg.pc <- (cpu.reg.pc + count) mod 0xFFFF let inc_cycles cpu count = cpu.cycles <- cpu.cycles + count let merge_bytes low high = (int_of_char high) * 256 + (int_of_char low) let split_2B x = let low = x mod 256 |> char_of_int in let high = x / 256 |> char_of_int in (high, low) let read_2B m addr = let low = Memory.get m addr in let high = Memory.get m (addr + 1) in merge_bytes low high let inc_BC cpu = let v = merge_bytes cpu.reg.c cpu.reg.b in let low, high = split_2B (v + 1) in cpu.reg.c <- low; cpu.reg.b <- high let cmp_A cpu n = let diff = int_of_char (cpu.reg.a) - n in cpu.flag.z <- diff = 0; cpu.flag.n <- true; cpu.flag.h <- diff > 0x0F || diff < 0; cpu.flag.c <- diff > 0xFF || diff < 0; update_flag_reg cpu let read_pc_byte cpu mem = let b = Memory.get mem cpu.reg.pc in inc_pc cpu 1; int_of_char b let read_pc_2bytes cpu mem = let word = read_2B mem cpu.reg.pc in inc_pc cpu 2; word let pop_stack cpu mem = let low = Memory.get mem cpu.reg.sp in cpu.reg.sp <- (cpu.reg.sp + 1) mod 0xFFFF; let high = Memory.get mem cpu.reg.sp in cpu.reg.sp <- (cpu.reg.sp + 1) mod 0xFFFF; merge_bytes low high (** http://imrannazar.com/GameBoy-Z80-Opcode-Map https://github.com/sinamas/gambatte/blob/master/libgambatte/src/cpu.cpp *) let run cpu (mem: Memory.map) = printf "\n"; print_cpu_state cpu; let opcode = read_pc_byte cpu mem |> char_of_int in (* Hexa.print_slice cartridge.full_rom cpu.reg.pc (cpu.reg.pc + 7); *) let inst = match opcode with (* 8-bit load *) (* LD r,(HL) *) | '\x7E' -> let inst = sprintf "LD \tA, (HL)" in let hl = merge_bytes cpu.reg.l cpu.reg.h in cpu.reg.a <- Memory.get mem hl; inc_cycles cpu 8; inst | '\x36' -> let n = read_pc_byte cpu mem in let inst = sprintf "LD \t(HL) 0x%02X" n in let hl = merge_bytes cpu.reg.l cpu.reg.h in Memory.set mem hl (char_of_int n); inc_cycles cpu 12; inst (* CPU control *) | '\x00' -> let inst = sprintf "NOP" in inc_cycles cpu 4; inst (* jump *) | '\x20' -> let n = read_pc_byte cpu mem in let inst = sprintf "JR \tNZ, 0x%02X" n in if cpu.flag.z = false then begin inc_pc cpu (n - 1); inc_cycles cpu 12; end else inc_cycles cpu 8; inst | '\xC9' -> let inst = sprintf "RET" in cpu.reg.pc <- pop_stack cpu mem; inc_cycles cpu 16; inst | '\xC0' -> let inst = sprintf "RET \tNZ" in if cpu.flag.z = false then begin cpu.reg.pc <- pop_stack cpu mem; inc_cycles cpu 20; end else inc_cycles cpu 8; inst | '\x03' -> let inst = sprintf "INC \tBC" in inc_BC cpu; inc_cycles cpu 8; inst | '\x05' -> let inst = sprintf "DEC \tB" in let dec = int_of_char(cpu.reg.b) - 1 in cpu.flag.z <- dec = 0; cpu.flag.n <- true; cpu.flag.h <- dec < 0; cpu.reg.b <- char_of_int @@ if dec >= 0 then dec else 0; inc_cycles cpu 4; inst | '\x06' -> let n = read_pc_byte cpu mem in let inst = sprintf "LD \tB, 0x%02X" n in cpu.reg.b <- char_of_int n; inc_cycles cpu 8; inst | '\x18' -> let n = read_pc_byte cpu mem in let inst = sprintf "JP \t0x%02X" n in inc_pc cpu (n - 1); inc_cycles cpu 12; inst | '\x21' -> let nn = read_pc_2bytes cpu mem in let inst = sprintf "LD \tHL, 0x%04X" nn in let high, low = split_2B nn in cpu.reg.h <- high; cpu.reg.l <- low; inc_cycles cpu 12; inst | '\x22' -> let inst = sprintf "LDI \t(HL), A" in let hl = merge_bytes cpu.reg.l cpu.reg.h in Memory.set mem hl cpu.reg.a; let high, low = split_2B (hl + 1) in cpu.reg.h <- high; cpu.reg.l <- low; inc_cycles cpu 8; inst | '\x28' -> let n = read_pc_byte cpu mem in let inst = sprintf "JR \tZ, 0x%02X" n in if cpu.flag.z = true then begin inc_pc cpu (n - 1); inc_cycles cpu 12; end else inc_cycles cpu 8; inst | '\x34' -> let inst = sprintf "INC \t(HL)" in let hl = merge_bytes cpu.reg.l cpu.reg.h in let v = Memory.get mem hl |> int_of_char in cpu.flag.z <- v + 1 = 0; cpu.flag.n <- false; cpu.flag.h <- v = 0b00001111; Memory.set mem hl (char_of_int (v + 1)); inc_cycles cpu 12; inst | '\x3E' -> let n = read_pc_byte cpu mem in let inst = sprintf "LD \tA, 0x%02X" n in cpu.reg.a <- char_of_int n; inc_cycles cpu 8; inst | '\xAF' -> let inst = sprintf "XOR \tA, A" in let int_A = int_of_char cpu.reg.a in cpu.reg.a <- char_of_int @@ int_A lxor int_A; inc_cycles cpu 4; inst | '\xC3' -> let addr = read_pc_2bytes cpu mem in let inst = sprintf "JP \t0x%04X" addr in cpu.reg.pc <- addr; inc_cycles cpu 16; inst | '\xE0' -> let n = read_pc_byte cpu mem in let inst = sprintf "LDH \t(0xFF%02X), A" n in Memory.set mem (0xFF00 + n) cpu.reg.a; inc_cycles cpu 12; inst | '\xEA' -> let addr = read_pc_2bytes cpu mem in let inst = sprintf "LD \t(0X%04X), A" addr in Memory.set mem addr cpu.reg.a; inc_cycles cpu 16; inst | '\xF0' -> let n = read_pc_byte cpu mem in let inst = sprintf "LDH \tA, (0xFF%02X)" n in cpu.reg.a <- Memory.get mem (0xFF00 + n); inc_cycles cpu 12; inst | '\xF3' -> let inst = sprintf "DI" in (* fixme *) inc_cycles cpu 4; inst | '\xFE' -> let n = read_pc_byte cpu mem in let inst = sprintf "CP \t0x%02X" n in cmp_A cpu n; inc_cycles cpu 8; inst | '\xFB' -> let inst = sprintf "EI" in (* enable interrupts, IME=1 *) inc_cycles cpu 4; inst | x -> eprintf "opcode 0x%02X\n" (int_of_char x); eprintf "#cycles: %d\n" cpu.cycles; failwith "Unimplemented opcode." in printf "[Instruction] %s\n" inst