Implement pixels as RGBX structure.

- Add ‘make debug’ target
- Add links in README
This commit is contained in:
Fabien Freling 2014-07-12 22:37:15 +02:00
parent 8175b8a06c
commit cce4d45ba6
4 changed files with 73 additions and 53 deletions

View file

@ -12,5 +12,8 @@ clean:
run: all
$(BUILD_DIR)/rotation $(IMG)
debug: all
lldb $(BUILD_DIR)/rotation $(IMG)
cachegrind: all
valgrind --tool=cachegrind $(BUILD_DIR)/rotation $(IMG)

View file

@ -1,3 +1,11 @@
# RotateMeFast
This project aims to rotate bitmap images very quickly (around a millisecond).
## Links
* [What Every Programmer Should Know About Memory](http://www.akkadia.org/drepper/cpumemory.pdf)
* [Best Practices for Using vImage](https://developer.apple.com/library/ios/documentation/Performance/Conceptual/vImage/BestPractices/BestPractices.html)
* [vImageRotate_ARGB8888](https://developer.apple.com/library/mac/documentation/Performance/Reference/vImage_geometric/Reference/reference.html#//apple_ref/c/func/vImageRotate_ARGB8888)
* [Vectorising code to take advantage of modern CPUs](http://www.walkingrandomly.com/?p=3378)
* http://locklessinc.com/articles/vectorize/

22
TODO.md
View file

@ -1,25 +1,31 @@
[-] Quaternions
[X] Draw rotated pixels in src order
[-] Draw rotated pixels in src order -> cache write miss
[X] Use atan2 at beginning and end of line.
Interpolation in-between values
[X] Test pixel perfect 90
[ ] Fix out-of-bounds pixel set
[ ] Optimization for square images?
[X] Fixed point computation?
[-] -funroll-loops
[X] Fixed point computation
[-] -funroll-loops -> no gain
[-] restrict qualifier -> unavailable in C++
# Cache
[-] Rotate per channel -> no gain
[ ] Load pixels in 64-bit variable
[X] Cut image in tiles
[X] Overlap
[-] Rotate in one temp tile then copy/move it
[X] Align tiles in memory
[-] Align memory -> no gain
[ ] RGBX format
## Alignement
[X] RGBX format (create pixel structure) on 8 bytes (can do computation in-place)
[ ] Load pixels in 64-bit variable
[ ] Align memory on 16 bytes
## Layout
[ ] Pack 4 neighbors in 16B structure (aligned)
Each point is followed by the point below
[ ] Spiral layout?
# Quality
[X] Interpolate using SIMD, SSE (no big gain)
[X] Interpolate using SIMD, SSE (no big gain, alignement problem?)
[ ] Image borders

View file

@ -60,6 +60,26 @@ uint8_t interpolate_packed(uint32_t pack, double x, double x_inv, double y, doub
//
//
// Pixel
//
typedef uint8_t pvalue_t;
struct pixel_t {
pvalue_t r;
pvalue_t g;
pvalue_t b;
pvalue_t x; // padding
pixel_t()
: r(0), g(0), b(0), x(0)
{}
};
//
//
// Image
@ -68,7 +88,7 @@ uint8_t interpolate_packed(uint32_t pack, double x, double x_inv, double y, doub
struct Image {
unsigned int width;
unsigned int height;
uint8_t* buffer;
pixel_t* buffer;
Image()
: width(0)
@ -85,8 +105,7 @@ struct Image {
{
this->width = w;
this->height = h;
buffer = new uint8_t[width * height * 3];
memset(buffer, 0, width * height * 3 * sizeof (uint8_t));
buffer = new pixel_t[width * height];
}
Image(string const& path)
@ -128,26 +147,6 @@ struct Image {
return true;
}
void set_pixel(unsigned int x, unsigned int y, uint8_t r, uint8_t g, uint8_t b)
{
if (x >= width || y >= height)
{
// cerr << __LINE__ << " | Point (" << x << ", " << y << ") out of bounds" << endl;
// cerr << " Image dimensions: " << width << " x " << height << endl;
// assert(false);
return;
}
int index = (y * width + x) * 3;
buffer[index++] = r;
buffer[index++] = g;
buffer[index++] = b;
}
void set_pixel(Point const& p, uint8_t r, uint8_t g, uint8_t b)
{
this->set_pixel(p.x, p.y, r, g, b);
}
protected:
bool read_header(std::ifstream& istr)
@ -218,13 +217,15 @@ struct Image {
virtual bool read_body(std::ifstream& istr)
{
unsigned int const nb_pixels = width * height;
buffer = new uint8_t[nb_pixels * 3];
buffer = new pixel_t[nb_pixels];
uint8_t* buf_index = buffer;
for (unsigned int i = 0; i < nb_pixels * 3; ++i)
pixel_t* pixel = buffer;
for (unsigned int i = 0; i < nb_pixels; ++i)
{
*buf_index = istr.get();
++buf_index;
pixel->r = istr.get();
pixel->g = istr.get();
pixel->b = istr.get();
++pixel;
}
return true;
@ -233,11 +234,13 @@ struct Image {
virtual bool write_body(std::ofstream& ostr) const
{
unsigned int const nb_pixels = width * height;
uint8_t* buf_index = buffer;
for (unsigned int i = 0; i < nb_pixels * 3; ++i)
pixel_t* pixel = buffer;
for (unsigned int i = 0; i < nb_pixels; ++i)
{
ostr << (char) *buf_index;
++buf_index;
ostr << (char) pixel->r;
ostr << (char) pixel->g;
ostr << (char) pixel->b;
++pixel;
}
return true;
@ -640,20 +643,20 @@ inline
void rotate_pixel(Image const& src,
Point const& src_rotated_point,
unsigned int const src_limit,
uint8_t* rotate_buffer, unsigned int rot_index)
pixel_t* rotate_buffer, unsigned int rot_index)
{
unsigned int const quantize = 8;
int const src_x = src_rotated_point.x >> 3;
int const src_y = src_rotated_point.y >> 3;
unsigned int src_index = (src_y * src.width + src_x) * 3;
unsigned int src_index = src_y * src.width + src_x;
// Bilinear interpolation
unsigned int src_index_1 = src_index;
unsigned int src_index_2 = src_index_1 + 3;
unsigned int src_index_3 = src_index_1 + 3 * src.width;
unsigned int src_index_4 = src_index_3 + 3;
unsigned int src_index_2 = src_index_1 + 1;
unsigned int src_index_3 = src_index_1 + 1 * src.width;
unsigned int src_index_4 = src_index_3 + 1;
// Out-of-bounds check
if (src_index_4 >= src_limit)
@ -665,12 +668,12 @@ void rotate_pixel(Image const& src,
unsigned int const inv_y = quantize - y_delta;
// No SIMD
rotate_buffer[rot_index] = ((src.buffer[src_index_1] * inv_x + src.buffer[src_index_2] * x_delta) * inv_y
+ (src.buffer[src_index_3] * inv_x + src.buffer[src_index_4] * x_delta) * y_delta) >> 6;
rotate_buffer[rot_index + 1] = ((src.buffer[src_index_1 + 1] * inv_x + src.buffer[src_index_2 + 1] * x_delta) * inv_y
+ (src.buffer[src_index_3 + 1] * inv_x + src.buffer[src_index_4 + 1] * x_delta) * y_delta) >> 6;
rotate_buffer[rot_index + 2] = ((src.buffer[src_index_1 + 2] * inv_x + src.buffer[src_index_2 + 2] * x_delta) * inv_y
+ (src.buffer[src_index_3 + 2] * inv_x + src.buffer[src_index_4 + 2] * x_delta) * y_delta) >> 6;
rotate_buffer[rot_index].r = ((src.buffer[src_index_1].r * inv_x + src.buffer[src_index_2].r * x_delta) * inv_y
+ (src.buffer[src_index_3].r * inv_x + src.buffer[src_index_4].r * x_delta) * y_delta) >> 6;
rotate_buffer[rot_index].g = ((src.buffer[src_index_1].g * inv_x + src.buffer[src_index_2].g * x_delta) * inv_y
+ (src.buffer[src_index_3].g * inv_x + src.buffer[src_index_4].g * x_delta) * y_delta) >> 6;
rotate_buffer[rot_index].b = ((src.buffer[src_index_1].b * inv_x + src.buffer[src_index_2].b * x_delta) * inv_y
+ (src.buffer[src_index_3].b * inv_x + src.buffer[src_index_4].b * x_delta) * y_delta) >> 6;
}
Image* rotate(Image const& src, double angle)
@ -709,7 +712,7 @@ Image* rotate(Image const& src, double angle)
DPoint const rot_origin_in_src = convert_img_coord_precision(src, rot_origin_in_src_grid);
unsigned int buffer_index = 0;
uint8_t* buffer = rotated->buffer;
pixel_t* buffer = rotated->buffer;
unsigned int const quantize = 8;
int const& src_qwidth = src.width * quantize;
@ -730,7 +733,7 @@ Image* rotate(Image const& src, double angle)
{
rotate_pixel(src, src_runner,
src_limit,
buffer, buffer_index * 3);
buffer, buffer_index);
}
++buffer_index;