#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "image.h" using namespace std; #define LOG cout << __FUNCTION__ << ": " << __LINE__ << " | " #define ERRLOG cerr << __FUNCTION__ << ": " << __LINE__ << " | " // // // Trigonometry // DPoint convert_grid_coord(Image const& img, Point const& p) { return DPoint(p.x - img.width / 2.0f + 0.5, p.y - img.height / 2.0f + 0.5); } double convert_radian(Image const& img, Point const& p, double const ratio) { DPoint centered = convert_grid_coord(img, p); double const cos_value = centered.x * ratio; double const sin_value = - (centered.y * ratio); double angle = acos(cos_value); if (sin_value < 0) { angle = (2 * M_PI) - angle; } return angle; } DPoint convert_abs_coord(double const angle, double const ratio) { return DPoint(cos(angle) / ratio, - sin(angle) / ratio); } Point convert_img_coord(Image const& img, DPoint const& p) { int x = round(p.x + (img.width / 2.0f) - 0.5); int y = round(p.y + (img.height / 2.0f) - 0.5); return Point(x, y); } DPoint convert_img_coord_precision(Image const& img, DPoint const& p) { double x = p.x + (img.width / 2.0f) - 0.5; double y = p.y + (img.height / 2.0f) - 0.5; return DPoint(x, y); } void convert_abs_to_polar_coord(DPoint const& p, double& angle, double& dist) { angle = atan2(-p.y, p.x); dist = sqrt(p.x * p.x + p.y * p.y); } DPoint convert_polar_to_grid_coord(double const angle, double const distance) { return DPoint(cos(angle) * distance, - (sin(angle) * distance)); } double compute_ratio(Image const& img) { double const trigo_length = (sqrt(img.width * img.width + img.height * img.height) - 1) / 2; return 1.0f / trigo_length; } void compute_output_size(Image const& src, double const rotation, unsigned int& width, unsigned int& height) { double const ratio = compute_ratio(src); double min_w = 0; double max_w = 0; double min_h = 0; double max_h = 0; Point p(0, 0); double angle = convert_radian(src, p, ratio); DPoint const tl = convert_abs_coord(angle + rotation, ratio); min_w = min(min_w, tl.x); max_w = max(max_w, tl.x); min_h = min(min_h, tl.y); max_h = max(max_h, tl.y); p = Point(src.width - 1, 0); angle = convert_radian(src, p, ratio); DPoint const tr = convert_abs_coord(angle + rotation, ratio); min_w = min(min_w, tr.x); max_w = max(max_w, tr.x); min_h = min(min_h, tr.y); max_h = max(max_h, tr.y); p = Point(0, src.height - 1); angle = convert_radian(src, p, ratio); DPoint const bl = convert_abs_coord(angle + rotation, ratio); min_w = min(min_w, bl.x); max_w = max(max_w, bl.x); min_h = min(min_h, bl.y); max_h = max(max_h, bl.y); p = Point(src.width - 1, src.height - 1); angle = convert_radian(src, p, ratio); DPoint const br = convert_abs_coord(angle + rotation, ratio); min_w = min(min_w, br.x); max_w = max(max_w, br.x); min_h = min(min_h, br.y); max_h = max(max_h, br.y); width = (int) (max_w - min_w) + 1; height = (int) (max_h - min_h) + 1; } DPoint get_mapped_point(Image const& src, Point const& p, double const rotation) { DPoint const d = convert_grid_coord(src, p); double p_angle = 0; double dist = 0; convert_abs_to_polar_coord(d, p_angle, dist); return convert_polar_to_grid_coord(p_angle + rotation, dist); } // // // Math approximation // void round_if_very_small(double& d) { double const sigma = 1.0e-10; if (abs(d) < sigma) d = 0.0; if (abs(d - 1) < sigma) d = 1.0; } inline bool fequal(float a, float b, float sigma) { return abs(a - b) < sigma; } // // // Padding // int get_iteration(int distance, int upper_bound, int step) { if (distance < 0) { return ceil((float) -distance / (float) step); } else if (distance >= upper_bound) { return ceil((float) (distance - upper_bound + 1) / (float) (-step)); } return 0; } uint16_t* generate_padding_table(Image const& rotated, Point src_rotated_origin, Point const& qdx, Point const& qdy, int src_qwidth, int src_qheight, int q_pos) { uint16_t* padding_table = new uint16_t[2 * rotated.height]; Point right_edge = src_rotated_origin; right_edge.x += (rotated.width - 1) * qdx.x; right_edge.y += (rotated.width - 1) * qdx.y; for (unsigned int i = 0; i < rotated.height; ++i) { int x_range = get_iteration(src_rotated_origin.x, src_qwidth - q_pos, qdx.x); int y_range = get_iteration(src_rotated_origin.y, src_qheight - q_pos, qdx.y); padding_table[2 * i] = max(max(x_range, y_range), 0); Point border(src_rotated_origin.x + padding_table[2 * i] * qdx.x, src_rotated_origin.y + padding_table[2 * i] * qdx.y); if (border.x < 0 || border.y < 0 || border.x >= src_qwidth || border.y >= src_qheight) { padding_table[2 * i] = rotated.width; } // Right padding x_range = get_iteration(right_edge.x, src_qwidth - q_pos, -qdx.x); y_range = get_iteration(right_edge.y, src_qheight - q_pos, -qdx.y); padding_table[2 * i + 1] = max(max(x_range, y_range), 0); padding_table[2 * i + 1] = min((int) padding_table[2 * i + 1], (int) rotated.width - padding_table[2 * i]); src_rotated_origin += qdy; right_edge += qdy; } // Right padding padding_table[1] = rotated.width - padding_table[0]; padding_table[2 * (rotated.height - 1) + 1] = rotated.width - padding_table[2 * (rotated.height - 1)]; return padding_table; } // // // Border // uint16_t* generate_border_table(uint16_t const* front_padding, uint16_t const* back_padding, Image const& image) { uint16_t* border_table = new uint16_t[image.height]; border_table[0] = image.width - front_padding[0] - back_padding[0]; for (unsigned int i = 1; i < image.height - 1; ++i) { if (front_padding[i] == front_padding[i - 1]) { border_table[i] = 1; } else { if (front_padding[i - 1] > front_padding[i]) { border_table[i] = front_padding[i - 1] - front_padding[i] + 1; } else { border_table[i - 1] = front_padding[i] - front_padding[i - 1] + 1; border_table[i] = 1; } } } // Check that we don't add too much border for (unsigned int i = 1; i < image.height - 1; ++i) { while (front_padding[i] + border_table[i] + back_padding[i] > (int) image.width) { border_table[i] -= 1; } } border_table[image.height - 1] = image.width - front_padding[image.height - 1] - back_padding[image.height - 1]; return border_table; } uint16_t* generate_border_table_back(uint16_t const* front_padding, uint16_t const* front_border, uint16_t const* back_padding, Image const& image) { uint16_t* back_border = new uint16_t[image.height]; back_border[0] = 0; for (unsigned int i = 1; i < image.height - 1; ++i) { if (back_padding[i] == back_padding[i - 1]) { back_border[i] = 1; } else { if (back_padding[i - 1] > back_padding[i]) { back_border[i] = back_padding[i - 1] - back_padding[i] + 1; } else { back_border[i - 1] = back_padding[i] - back_padding[i - 1] + 1; back_border[i] = 1; } } } back_border[0] = 0; // Check that we don't add too much border for (unsigned int i = 1; i < image.height - 1; ++i) { while (front_padding[i] + front_border[i] + back_border[i] + back_padding[i] > (int) image.width) { back_border[i] -= 1; } } back_border[image.height - 1] = 0; return back_border; } // // // Image rotation // inline void fill_row(Image const& src, Point const& src_rotated_point, uint8_t* row_buffer, unsigned int row_index, uint8_t* row_coefs, int q_pow) { // Quantize on a 8x8 grid int const q_inter_pow = 3; int const q_inter = 8; // 1 << q_inter_pow; int const mask = 0x07; int const src_x = src_rotated_point.x >> q_pow; int const src_y = src_rotated_point.y >> q_pow; // Bilinear interpolation unsigned int const src_index_1 = src_y * src.width + src_x; unsigned int const src_index_3 = src_index_1 + src.width; row_buffer[4 * row_index] = src.buffer[src_index_1]; row_buffer[4 * row_index + 1] = src.buffer[src_index_1 + 1]; row_buffer[4 * row_index + 2] = src.buffer[src_index_3]; row_buffer[4 * row_index + 3] = src.buffer[src_index_3 + 1]; unsigned int const x_delta = (src_rotated_point.x >> (q_pow - q_inter_pow)) & mask; unsigned int const y_delta = (src_rotated_point.y >> (q_pow - q_inter_pow)) & mask; unsigned int const inv_x = q_inter - x_delta; unsigned int const inv_y = q_inter - y_delta; row_coefs[4 * row_index] = inv_x * inv_y; row_coefs[4 * row_index + 1] = x_delta * inv_y; row_coefs[4 * row_index + 2] = inv_x * y_delta; row_coefs[4 * row_index + 3] = x_delta * y_delta; } inline void interpolate_row(uint8_t* row_buffer, uint8_t* row_coefs, unsigned int row_index, uint64_t* rotate_buffer, unsigned int rot_index) { __m128i pixels = _mm_loadu_si128((__m128i*) &row_buffer[row_index]); __m128i coefs = _mm_loadu_si128((__m128i*) &row_coefs[row_index]); pixels = _mm_maddubs_epi16(pixels, coefs); // 2 bins per pixel, 4 pixels __m128i const zero = _mm_set1_epi16(0); pixels = _mm_hadd_epi16(pixels, zero); // 1 bin per pixel, 4 pixels pixels = _mm_srli_epi16(pixels, 6); rotate_buffer[rot_index / 4] = _mm_extract_epi64(pixels, 0); } inline void rotate_pixel(Image const& src, Point const& src_rotated_point, pvalue_t* rotate_buffer, unsigned int rot_index, int q_pow) { // Quantize on a 8x8 grid int const q_inter_pow = 3; int const q_inter = 8; // 1 << q_inter_pow; int const mask = 0x07; int const src_x = src_rotated_point.x >> q_pow; int const src_y = src_rotated_point.y >> q_pow; // Bilinear interpolation unsigned int const src_index_1 = src_y * src.width + src_x; unsigned int const src_index_3 = src_index_1 + src.width; pvalue_t const src_tl = src.buffer[src_index_1]; pvalue_t const src_tr = src.buffer[src_index_1 + 1]; pvalue_t const src_bl = src.buffer[src_index_3]; pvalue_t const src_br = src.buffer[src_index_3 + 1]; unsigned int const x_delta = (src_rotated_point.x >> (q_pow - q_inter_pow)) & mask; unsigned int const y_delta = (src_rotated_point.y >> (q_pow - q_inter_pow)) & mask; unsigned int const inv_x = q_inter - x_delta; unsigned int const inv_y = q_inter - y_delta; pvalue_t interpolated = ((src_tl * inv_x + src_tr * x_delta) * inv_y + (src_bl * inv_x + src_br * x_delta) * y_delta) >> 6; rotate_buffer[rot_index] = interpolated; } Image* rotate(Image const& src, double angle) { double const rotation = (angle / 180.0f) * M_PI; unsigned int w = 0; unsigned int h = 0; compute_output_size(src, rotation, w, h); Image* rotated = new Image(w, h, src.type); DPoint const src_origin = get_mapped_point(*rotated, Point(0, 0), -rotation); DPoint src_delta_x = get_mapped_point(*rotated, Point(src.width, 0), -rotation); DPoint src_delta_y = get_mapped_point(*rotated, Point(0, src.height), -rotation); src_delta_x -= src_origin; round_if_very_small(src_delta_x.x); round_if_very_small(src_delta_x.y); src_delta_y -= src_origin; round_if_very_small(src_delta_y.x); round_if_very_small(src_delta_y.y); // Quantized position on a 1024x1024 grid int const q_pos_pow = 10; int const q_pos = 1 << q_pos_pow; Point const qdx(ceil(src_delta_x.x * q_pos / src.width), ceil(src_delta_x.y * q_pos / src.width)); Point const qdy(ceil(src_delta_y.x * q_pos / src.height), ceil(src_delta_y.y * q_pos / src.height)); DPoint const rot_origin_in_src_grid = get_mapped_point(*rotated, Point(0, 0), -rotation); DPoint const rot_origin_in_src = convert_img_coord_precision(src, rot_origin_in_src_grid); unsigned int buffer_index = 0; pvalue_t* buffer = rotated->buffer; uint64_t* buffer64 = (uint64_t*) rotated->buffer; int const width = rotated->width; int const height = rotated->height; int const& src_qwidth = src.width * q_pos; int const& src_qheight = src.height * q_pos; Point src_rotated_origin(rot_origin_in_src.x * q_pos, rot_origin_in_src.y * q_pos); // Padding unique_ptr padding_table(generate_padding_table(*rotated, src_rotated_origin, qdx, qdy, src_qwidth, src_qheight, q_pos)); int previous_right_padding = 0; // Row buffer unique_ptr row_buffer(new uint8_t[width * 4]); unique_ptr row_coefs(new uint8_t[width * 4]); for (int y = 0; y < height; ++y) { int const left_padding = padding_table[2 * y]; // int const left_border = 0; // int const right_border = 0; int const right_padding = padding_table[2 * y + 1]; int const core_pixels = width - left_padding - right_padding; // Padding int const padding = left_padding + previous_right_padding; memset(buffer + buffer_index, 0, padding * sizeof (pvalue_t)); buffer_index += padding; previous_right_padding = right_padding; // // Border // for (int x = 0; x < left_border; ++x, ++buffer_index) // { // buffer[buffer_index] = 0; // TODO: handle border // } Point src_rotated_point(src_rotated_origin.x + left_padding * qdx.x, src_rotated_origin.y + left_padding * qdx.y); // Body #ifndef SIMD for (int x = 0; x < core_pixels; ++x, ++buffer_index) { rotate_pixel(src, src_rotated_point, buffer, buffer_index, q_pos_pow); src_rotated_point += qdx; } #else for (int x = 0; x < core_pixels; ++x) { fill_row(src, src_rotated_point, row_buffer.get(), x, row_coefs.get(), q_pos_pow); src_rotated_point += qdx; } // We process 4 pixels at a time for (int x = 0; x < core_pixels / 4; ++x) { interpolate_row(row_buffer.get(), row_coefs.get(), x * 16, buffer64, buffer_index); buffer_index += 4; } buffer_index += core_pixels % 4; #endif // ! SIMD // // Border // for (int x = 0; x < right_border; ++x, ++buffer_index) // { // buffer[buffer_index] = 0; // TODO: handle border // src_rotated_index += pdx; // } src_rotated_origin += qdy; } // Final right padding memset(buffer + buffer_index, 0, padding_table[2 * (height - 1) + 1] * sizeof (pvalue_t)); return rotated; } // // // Check // bool check_points() { Image five(5, 5, pnm::Format::PGM); Point origin(0, 0); DPoint d1 = convert_grid_coord(five, origin); assert(d1.x == -2); assert(d1.y == -2); return true; } bool check_trigo() { Image square(500, 500, pnm::Format::PGM); double const ratio = compute_ratio(square); double const sigma = 1.0e-2; if (!fequal(ratio, 1 / 707.106, sigma)) { cerr << __LINE__ << " | Invalid ratio: " << ratio << " != " << 1 / 707.106 << endl; return false; } // Check that the origin of a square image is at sqrt(2) / 2 double const angle = convert_radian(square, Point(0, 0), ratio); if (!fequal(angle, 3 * M_PI / 4, sigma)) { cerr << __LINE__ << " | Invalid angle value: " << angle << " != " << 3 * M_PI / 4 << endl; return false; } // Check that we can reverse the origin point. DPoint const abs_reverse_point = convert_abs_coord(angle, ratio); Point const reverse_point = convert_img_coord(square, abs_reverse_point); if (!fequal(0.0, reverse_point.x, sigma) || !fequal(0.0, reverse_point.y, sigma)) { cerr << __LINE__ << "Reverse origin fail" << endl; cerr << " " << reverse_point << " != (0, 0)" << endl; cerr << " abs point " << abs_reverse_point << endl; return false; } // Check that when rotating the origin by 45 degrees double const rotation = M_PI / 4; // 45 degrees unsigned int w = 0; unsigned int h = 0; compute_output_size(square, rotation, w, h); if (!fequal(w, square.width * sqrt(2), sigma * square.width) || !fequal(h, square.height * sqrt(2), sigma * square.height)) { cerr << "Invalid rotated image dimensions " << w << " x " << h << endl; cerr << " expected " << (int) ceil(square.width * sqrt(2)) << " x " << (int) ceil(square.height * sqrt(2)) << endl; return false; } Image rotated(w, h, pnm::Format::PGM); DPoint const a_p45 = convert_abs_coord(angle + rotation, ratio); Point const p45 = convert_img_coord(rotated, a_p45); if (!fequal(0, p45.x, sigma)) { cerr << __LINE__ << " > Rotation origin by 45 degrees:" << endl; cerr << " invalid x value: " << p45.x << " != " << 0 << endl; cerr << " absolute point: " << a_p45 << endl; cerr << " relative point: " << p45 << endl; return false; } if (!fequal(p45.y, (h - 1) / 2.0f, sigma)) { cerr << __LINE__ << " > Rotation origin by 45 degrees:" << endl; cerr << "Invalid y value: " << p45.y << " != " << (h - 1) / 2.0f << endl; cerr << " absolute point: " << a_p45 << endl; cerr << " relative point: " << p45 << endl; return false; } // Polar coordinates { DPoint const d(-42.5, 37.5); double angle = 0; double dist = 0; convert_abs_to_polar_coord(d, angle, dist); DPoint const reversed = convert_polar_to_grid_coord(angle, dist); if (!fequal(d.x, reversed.x, sigma) || !fequal(d.y, reversed.y, sigma)) { cerr << __LINE__ << " > Reverse polar coordinates:" << endl; cerr << reversed << " != " << d << endl; cerr << "polar (" << angle << ", " << dist << ")" << endl; return false; } } return true; } bool check_00(string const& path) { Image const src(path); Image const* rotated = rotate(src, 0); for (unsigned int y = 0; y < rotated->height; ++y) { for (unsigned int x = 0; x < rotated->width; ++x) { unsigned rot_index = (y * rotated->width + x) * rotated->pixel_size; unsigned src_index = (y * src.width + x) * src.pixel_size; if (memcmp(&rotated->buffer[rot_index], &src.buffer[src_index], src.pixel_size * sizeof (pvalue_t)) != 0) { Point r(x, y); Point s(x, y); LOG << "R" << r << " != S" << s << endl; LOG << "R: " << rot_index << " != S: " << src_index << endl; LOG << rotated->buffer[rot_index] << " != " << src.buffer[src_index] << endl; LOG << "R dim: " << rotated->width << " x " << rotated->height << endl; LOG << "S dim: " << src.width << " x " << src.height << endl; return false; } } } delete rotated; return true; } bool check_90(string const& path) { Image const src(path); Image const* rotated = rotate(src, 90); for (unsigned int y = 0; y < rotated->height; ++y) { for (unsigned int x = 0; x < rotated->width; ++x) { unsigned rot_index = (y * rotated->width + x) * rotated->pixel_size; unsigned src_index = (x * src.width + (src.width - 1 - y)) * src.pixel_size; if (memcmp(&rotated->buffer[rot_index], &src.buffer[src_index], src.pixel_size * sizeof (pvalue_t)) != 0) { Point r(x, y); Point s((src.width - 1 - y), x); cerr << __LINE__ << " | R: " << r << " != S:" << s << endl; cerr << "R dim: " << rotated->width << " x " << rotated->height << endl; cerr << "S dim: " << src.width << " x " << src.height << endl; return false; } } } delete rotated; return true; } // // // Main // string get_save_path(string const& base, unsigned int i) { stringstream filename; //filename << "/tmp/"; filename << base << "_"; if (i < 100) filename << "0"; if (i < 10) filename << "0"; filename << i << ".pnm"; return filename.str(); } int main(int argc, char* argv[]) { if (argc < 2) { cout << "Usage: " << argv[0] << " image.ppm" << endl; return 1; } bool perform_check = false; if (perform_check) { if (!check_points()) return 1; if (!check_trigo()) return 1; if (!check_00(argv[1])) { ERRLOG << "0 degree check failed" << endl << endl; return 1; } if (!check_90(argv[1])) { ERRLOG << "90 degrees check failed" << endl << endl; return 1; } } double const step = 5; bool save_output_img = true; bool print_each_run = false; // No tile Image img(argv[1]); float average = 0.0; int i = 0; for (double rotation = 0; rotation <= 360; rotation += step) { auto const before = chrono::high_resolution_clock::now(); Image* const rotated = rotate(img, rotation); auto const after = chrono::high_resolution_clock::now(); auto const duration_ms = std::chrono::duration_cast(after - before); average += duration_ms.count(); if (print_each_run) cout << "rotate(" << rotation << "): " << duration_ms.count() << " ms" << endl; if (save_output_img) rotated->save(get_save_path("rotated", rotation)); delete rotated; ++i; } cout << "---------" << endl; cout << " average: " << average / i << "ms" << endl << endl; return 0; }