#include #include #include #include #include #include using namespace std; template struct TPoint { T x; T y; TPoint(T a, T b) : x(a) , y(b) {} }; typedef TPoint Point; typedef TPoint APoint; // absolute point, can be negative typedef TPoint DPoint; // absolute point, can be negative template std::basic_ostream& operator << (std::basic_ostream& o, TPoint const& p) { o << "(" << p.x << ", " << p.y << ")"; return o; } struct Image { unsigned int width; unsigned int height; uint8_t* r_chan; uint8_t* g_chan; uint8_t* b_chan; Image() : width(0) , height(0) , r_chan(NULL) , g_chan(NULL) , b_chan(NULL) {} Image(unsigned int w, unsigned int h) { this->width = w; this->height = h; r_chan = new uint8_t[width * height]; memset(r_chan, 0, width * height * sizeof (uint8_t)); g_chan = new uint8_t[width * height]; memset(g_chan, 0, width * height * sizeof (uint8_t)); b_chan = new uint8_t[width * height]; memset(b_chan, 0, width * height * sizeof (uint8_t)); } Image(string const& path) : Image() { ifstream is(path); if (!is.is_open()) { cerr << "Cannot open file '" << path << "'" << endl; abort(); } if (!this->read_header(is)) { cerr << "Invalid header." << endl; abort(); } if (!this->read_body(is)) { delete r_chan; r_chan = nullptr; delete g_chan; r_chan = nullptr; delete b_chan; r_chan = nullptr; cerr << "Invalid header." << endl; abort(); } } bool save(string const& path) { ofstream os(path); if (!os.is_open()) { cerr << "Cannot open file '" << path << "'" << endl; return false; } this->write_header(os); this->write_body(os); return true; } void set_pixel(unsigned int x, unsigned int y, uint8_t r, uint8_t g, uint8_t b) { int const index = y * width + x; r_chan[index] = r; g_chan[index] = g; b_chan[index] = b; } private: bool read_header(std::ifstream& istr) { // check magic if (istr.get() != 'P' ) { return false; } char type = static_cast(istr.get()); if (type != '6') { return false; } if (istr.get() != '\n') { return false; } // skip comments while (istr.peek() == '#') { std::string line; std::getline(istr, line); } // get size istr >> width >> height; if (width == 0 || height == 0) { return false; } // get maxvalue if (istr.get() != '\n') { return false; } int max_value = -1; istr >> max_value; if (max_value > 255) { return false; } if (istr.get() != '\n') { return false; } cout << "width: " << width << endl; cout << "height: " << height << endl; return true; } bool write_header(std::ofstream& ostr) { ostr << "P6" << endl; ostr << width << " " << height << endl; ostr << "255" << endl; return true; } bool read_body(std::ifstream& istr) { r_chan = new uint8_t[width * height]; g_chan = new uint8_t[width * height]; b_chan = new uint8_t[width * height]; for (unsigned int row = 0; row < height; ++row) { for (unsigned int col = 0; col < width; ++col) { int index = row * width + col; r_chan[index] = istr.get(); g_chan[index] = istr.get(); b_chan[index] = istr.get(); } } return true; } bool write_body(std::ofstream& ostr) { for (unsigned int row = 0; row < height; ++row) { for (unsigned int col = 0; col < width; ++col) { int index = row * width + col; ostr << (char) r_chan[index]; ostr << (char) g_chan[index]; ostr << (char) b_chan[index]; } } return true; } }; // // // Drawing // void draw_line(Image& img, unsigned int x1, unsigned int y1, unsigned int x2, unsigned int y2) { assert(x1 < x2); double const slope = (double) (y2 - y1) / (double) (x2 - x1); for (unsigned int i = x1; i <= x2; ++i) { unsigned int y = slope * (i - x1) + y1; img.set_pixel(i, y, 255, 0, 0); // set line to red } } void draw_line(Image& img, Point const& p1, Point const& p2) { draw_line(img, p1.x, p1.y, p2.x, p2.y); } Point rotate(Image const& img, Point const& src, double radian, double const ratio) { cout << "rotate (" << src.x << ", " << src.y << ") x " << radian << endl; double x = src.x - (img.width / 2.0f); x *= ratio; // double y = - src.y + (src.height / 2.0f); // y *= ratio; double const angle_value = acos(x) + radian; double const cos_x = cos(angle_value); double const sin_x = sin(angle_value); unsigned int const new_x = ceil(cos_x / ratio); unsigned int const new_y = ceil(sin_x / ratio); cout << " = (" << new_x << ", " << new_y << ")" << endl; return Point(new_x, new_y); } // // // Trigonometry // double convert_radian(Image const& img, Point const& p, double const ratio) { cout << "X: " << p.x << " - " << img.width / 2.0f << endl; cout << "Y: " << - (int) p.y << " + " << img.height / 2.0f << endl; double const centered_x = p.x - (img.width / 2.0f); double const centered_y = (- (int) p.y) + (img.height / 2.0f); cout << "centered point (" << centered_x << ", " << centered_y << ")" << endl; double const cos_value = centered_x * ratio; double const sin_value = centered_y * ratio; double angle = acos(cos_value); if (sin_value < 0) angle = 2 * M_PI - angle; return angle; } APoint convert_abs_coord(double const angle, double const ratio) { cout << "Angle: " << angle << endl; cout << "cos: " << cos(angle) << endl; cout << "sin: " << sin(angle) << endl; APoint tmp((int) ceil(cos(angle) / ratio), (int) ceil(sin(angle) / ratio)); cout << "point: " << tmp << endl; return APoint((int) ceil(cos(angle) / ratio), (int) ceil(sin(angle) / ratio)); } Point convert_img_coord(Image const& img, APoint const& p) { cout << "image: " << img.width << " x " << img.height << endl; cout << "p: " << p << endl; cout << "h / 2: " << img.height / 2.0f << endl; return Point(p.x + img.width / 2.0f, - p.y + img.height / 2.0f); } double compute_ratio(Image const& img) { cout << "Compute ratio" << endl; unsigned int const nb_points = img.width * img.height; cout << " " << nb_points << " points" << endl; double const square_side = sqrt(nb_points) - 1; cout << " square side: " << square_side << endl; double const half_side = square_side / 2; cout << " half side: " << half_side << endl; unsigned int const trigo_length = (unsigned int) ceil(half_side * sqrt(2)); cout << " trigo length: " << trigo_length << endl; return 1.0f / trigo_length; } inline bool fequal(float a, float b, float sigma) { return abs(a - b) < sigma; } void compute_output_size(Image const& src, double const rotation, unsigned int& width, unsigned int& height) { double const ratio = compute_ratio(src); int min_w = 0; int max_w = 0; int min_h = 0; int max_h = 0; cout << "Image dimensions: " << src.width << " x " << src.height << endl; Point p(0, 0); double angle = convert_radian(src, p, ratio); APoint tl = convert_abs_coord(angle + rotation, ratio); min_w = min(min_w, tl.x); max_w = max(max_w, tl.x); min_h = min(min_h, tl.y); max_h = max(max_h, tl.y); cout << "Rotated " << p << " (" << angle << ") = " << tl << "(" << angle + rotation << ")" << endl << endl; p = Point(src.width - 1, 0); angle = convert_radian(src, p, ratio); APoint tr = convert_abs_coord(angle + rotation, ratio); min_w = min(min_w, tr.x); max_w = max(max_w, tr.x); min_h = min(min_h, tr.y); max_h = max(max_h, tr.y); cout << "Rotated " << p << " (" << angle << ") = " << tr << "(" << angle + rotation << ")" << endl << endl; p = Point(0, src.height - 1); angle = convert_radian(src, p, ratio); APoint bl = convert_abs_coord(angle + rotation, ratio); min_w = min(min_w, bl.x); max_w = max(max_w, bl.x); min_h = min(min_h, bl.y); max_h = max(max_h, bl.y); cout << "Rotated " << p << " (" << angle << ") = " << bl << "(" << angle + rotation << ")" << endl << endl; p = Point(src.width - 1, src.height - 1); angle = convert_radian(src, p, ratio); APoint br = convert_abs_coord(angle + rotation, ratio); min_w = min(min_w, br.x); max_w = max(max_w, br.x); min_h = min(min_h, br.y); max_h = max(max_h, br.y); cout << "Rotated " << p << " (" << angle << ") = " << br << "(" << angle + rotation << ")" << endl << endl; width = max_w - min_w + 1; height = max_h - min_h + 1; } bool check_trigo() { Image square(500, 500); double const ratio = compute_ratio(square); // Check that the origin of a square image is at sqrt(2) / 2 double const angle = convert_radian(square, Point(0, 0), ratio); double const sigma = 1.0e-2; if (abs(angle - (3 * M_PI / 4)) > sigma) { cout << "Invalid angle value: " << angle << " != " << 3 * M_PI / 4 << endl; return false; } // Check that we can reverse the origin point. APoint const abs_reverse_point = convert_abs_coord(angle, ratio); cout << "reversed abs origin: " << abs_reverse_point << endl; Point const reverse_point = convert_img_coord(square, abs_reverse_point); cout << "reversed origin in square: " << reverse_point << endl; if (abs(0.0 - reverse_point.x) > sigma) { cerr << "Reverse origin:" << endl; cout << "Invalid x value: " << reverse_point.x << " != " << 0 << endl; return false; } if (abs(0.0 - reverse_point.y) > sigma) { cerr << "Reverse origin:" << endl; cout << "Invalid y value: " << reverse_point.y << " != " << 0 << endl; return false; } // Check that when rotating the origin by 45 degrees double const rotation = M_PI / 4; // 45 degrees unsigned int w = 0; unsigned int h = 0; compute_output_size(square, rotation, w, h); // failed check: is precision an issue? // if (!fequal(w, square.width * sqrt(2), sigma) // || !fequal(h, square.height * sqrt(2), sigma)) // { // cerr << "Invalid rotated image dimensions " << w << " x " << h << endl; // cerr << " expected " << (int) ceil(square.width * sqrt(2)) << " x " << (int) ceil(square.height * sqrt(2)) << endl; // return false; // } Image rotated(w, h); APoint const a_p45 = convert_abs_coord(angle + rotation, ratio); Point const p45 = convert_img_coord(rotated, a_p45); if (abs((float) (-1) - p45.x) > sigma) { cerr << "Rotation origin by 45 degrees:" << endl; cerr << "Invalid x value: " << p45.x << " != " << -1 << endl; cerr << "Absolute point: (" << a_p45.x << ", " << a_p45.y << ")" << endl; return false; } if (abs(0.0 - p45.y) > sigma) { cerr << "Rotation origin by 45 degrees:" << endl; cerr << "Invalid y value: " << p45.y << " != " << 0 << endl; return false; } return true; } // // // Rotation // Image rotate(Image const& src, double angle) { unsigned int const nb_points = src.width * src.height; double const square_side = sqrt(nb_points); double const half_side = square_side / 2; unsigned int const trigo_length = (unsigned int) ceil(half_side * sqrt(2)); double const ratio = 1.0f / trigo_length; // top left double const cos_value = - (src.width / 2.0f) * ratio; // double const sin_value = (src.height / 2.0f) * ratio; double const angle_value = acos(cos_value); cout << "top left angle: " << angle_value << endl; double const radian = (angle / 360.0f) * (2 * M_PI); // FIXME Image rot(trigo_length, trigo_length); Point tl = rotate(src, Point(0, 0), radian, ratio); Point tr = rotate(src, Point(src.width - 1, 0), radian, ratio); draw_line(rot, tl, tr); // draw_line(rot, 0, 0, rot.width - 1, 0); // draw_line(rot, 0, rot.height - 1, rot.width - 1, rot.height - 1); // draw_line(rot, 0, 0, rot.width - 1, rot.height - 1); // rot.set_pixel(rot.width - 1, rot.height - 1, 0, 255, 0); // draw_line(rot, 0, 0, 0, rot.height - 1); // draw_line(rot, rot.width - 1, 0, rot.width - 1, rot.height - 1); return rot; } // // // Main // int main() { if (!check_trigo()) return 1; return 0; Image img("img/luigi.ppm"); Image rotated = rotate(img, 30); rotated.save("rotated.ppm"); return 0; }