#include #include #include #include #include #include #include using namespace std; template struct TPoint { T x; T y; TPoint(T a, T b) : x(a) , y(b) {} }; typedef TPoint Point; typedef TPoint APoint; // absolute point, can be negative typedef TPoint DPoint; // absolute point, can be negative template std::basic_ostream& operator << (std::basic_ostream& o, TPoint const& p) { o << "(" << p.x << ", " << p.y << ")"; return o; } struct Image { unsigned int width; unsigned int height; uint8_t* r_chan; uint8_t* g_chan; uint8_t* b_chan; Image() : width(0) , height(0) , r_chan(NULL) , g_chan(NULL) , b_chan(NULL) {} Image(unsigned int w, unsigned int h) { this->width = w; this->height = h; r_chan = new uint8_t[width * height]; memset(r_chan, 0, width * height * sizeof (uint8_t)); g_chan = new uint8_t[width * height]; memset(g_chan, 0, width * height * sizeof (uint8_t)); b_chan = new uint8_t[width * height]; memset(b_chan, 0, width * height * sizeof (uint8_t)); } Image(string const& path) : Image() { ifstream is(path); if (!is.is_open()) { cerr << "Cannot open file '" << path << "'" << endl; abort(); } if (!this->read_header(is)) { cerr << "Invalid header." << endl; abort(); } if (!this->read_body(is)) { delete r_chan; r_chan = nullptr; delete g_chan; r_chan = nullptr; delete b_chan; r_chan = nullptr; cerr << "Invalid header." << endl; abort(); } } bool save(string const& path) { ofstream os(path); if (!os.is_open()) { cerr << "Cannot open file '" << path << "'" << endl; return false; } this->write_header(os); this->write_body(os); return true; } void set_pixel(unsigned int x, unsigned int y, uint8_t r, uint8_t g, uint8_t b) { if (x >= width || y >= height) { cerr << "Point (" << x << ", " << y << ") out of bounds" << endl; cerr << " Image dimensions: " << width << " x " << height << endl; assert(false); } int const index = y * width + x; r_chan[index] = r; g_chan[index] = g; b_chan[index] = b; } private: bool read_header(std::ifstream& istr) { // check magic if (istr.get() != 'P' ) { return false; } char type = static_cast(istr.get()); if (type != '6') { return false; } if (istr.get() != '\n') { return false; } // skip comments while (istr.peek() == '#') { std::string line; std::getline(istr, line); } // get size istr >> width >> height; if (width == 0 || height == 0) { return false; } // get maxvalue if (istr.get() != '\n') { return false; } int max_value = -1; istr >> max_value; if (max_value > 255) { return false; } if (istr.get() != '\n') { return false; } cout << "width: " << width << endl; cout << "height: " << height << endl; return true; } bool write_header(std::ofstream& ostr) { ostr << "P6" << endl; ostr << width << " " << height << endl; ostr << "255" << endl; return true; } bool read_body(std::ifstream& istr) { r_chan = new uint8_t[width * height]; g_chan = new uint8_t[width * height]; b_chan = new uint8_t[width * height]; for (unsigned int row = 0; row < height; ++row) { for (unsigned int col = 0; col < width; ++col) { int index = row * width + col; r_chan[index] = istr.get(); g_chan[index] = istr.get(); b_chan[index] = istr.get(); } } return true; } bool write_body(std::ofstream& ostr) { for (unsigned int row = 0; row < height; ++row) { for (unsigned int col = 0; col < width; ++col) { int index = row * width + col; ostr << (char) r_chan[index]; ostr << (char) g_chan[index]; ostr << (char) b_chan[index]; } } return true; } }; // // // Trigonometry // DPoint convert_grid_coord(Image const& img, Point const& p) { return DPoint(p.x - img.width / 2.0f + 0.5, p.y - img.height / 2.0f + 0.5); } double convert_radian(Image const& img, Point const& p, double const ratio) { DPoint centered = convert_grid_coord(img, p); double const cos_value = centered.x * ratio; double const sin_value = - (centered.y * ratio); double angle = acos(cos_value); if (sin_value < 0) angle = 2 * M_PI - angle; return angle; } DPoint convert_abs_coord(double const angle, double const ratio) { return DPoint(cos(angle) / ratio, - (sin(angle) / ratio)); } Point convert_img_coord(Image const& img, DPoint const& p) { int x = round(p.x + (img.width / 2.0f) - 0.5); int y = round(p.y + (img.height / 2.0f) - 0.5); Point p_mapped(x, y); // if (p_mapped.x >= img.width || p_mapped.y >= img.height) // { // cerr << "Point coord mapping" << endl; // cerr << " Input point:" << p << endl; // cerr << " Point " << p_mapped << " out of bounds" << endl; // cerr << " Image dimensions: " << img.width << " x " << img.height << endl; // assert(false); // } return p_mapped; } double compute_ratio(Image const& img) { unsigned int const nb_points = img.width * img.height; double const square_side = sqrt(nb_points) - 1; double const half_side = square_side / 2; double const trigo_length = ceil(half_side * sqrt(2)); return 1.0f / trigo_length; } inline bool fequal(float a, float b, float sigma) { return abs(a - b) < sigma; } void compute_output_size(Image const& src, double const rotation, unsigned int& width, unsigned int& height) { double const ratio = compute_ratio(src); double min_w = 0; double max_w = 0; double min_h = 0; double max_h = 0; //cout << "Image dimensions: " << src.width << " x " << src.height << endl; Point p(0, 0); double angle = convert_radian(src, p, ratio); DPoint tl = convert_abs_coord(angle + rotation, ratio); min_w = min(min_w, tl.x); max_w = max(max_w, tl.x); min_h = min(min_h, tl.y); max_h = max(max_h, tl.y); //cout << "Rotated " << p << " (" << angle << ") = " << tl << "(" << angle + rotation << ")" << endl << endl; p = Point(src.width - 1, 0); angle = convert_radian(src, p, ratio); DPoint tr = convert_abs_coord(angle + rotation, ratio); min_w = min(min_w, tr.x); max_w = max(max_w, tr.x); min_h = min(min_h, tr.y); max_h = max(max_h, tr.y); //cout << "Rotated " << p << " (" << angle << ") = " << tr << "(" << angle + rotation << ")" << endl << endl; p = Point(0, src.height - 1); angle = convert_radian(src, p, ratio); DPoint bl = convert_abs_coord(angle + rotation, ratio); min_w = min(min_w, bl.x); max_w = max(max_w, bl.x); min_h = min(min_h, bl.y); max_h = max(max_h, bl.y); //cout << "Rotated " << p << " (" << angle << ") = " << bl << "(" << angle + rotation << ")" << endl << endl; p = Point(src.width - 1, src.height - 1); angle = convert_radian(src, p, ratio); DPoint br = convert_abs_coord(angle + rotation, ratio); min_w = min(min_w, br.x); max_w = max(max_w, br.x); min_h = min(min_h, br.y); max_h = max(max_h, br.y); //cout << "Rotated " << p << " (" << angle << ") = " << br << "(" << angle + rotation << ")" << endl << endl; width = (int) (max_w - min_w) + 1; height = (int) (max_h - min_h) + 1; } // // // Rotation // Point rotate(Image const& src, Point const& p, double const ratio, double const rotation, Image const& rotated) { double angle = convert_radian(src, p, ratio); DPoint a_point = convert_abs_coord(angle + rotation, ratio); return convert_img_coord(rotated, a_point); } Image rotate(Image const& src, double angle) { // FIXME Image rot(0, 0); cout << angle << src.width << endl; // to remove warnings return rot; } // // // Drawing // void draw_line(Image& img, unsigned int x1, unsigned int y1, unsigned int x2, unsigned int y2) { if (x1 > x2) { swap(x1, x2); swap(y1, y2); } unsigned int const y_min = min(y1, y2); unsigned int const y_max = max(y1, y2); double const slope = ((double) y2 - y1) / ((double) x2 - x1); int y_inc = slope > 0 ? 1 : -1; unsigned int previous_y = y1; for (unsigned int i = x1; i <= x2; ++i) { unsigned int y = slope * (i - x1) + y1; y = min(y, y_max); y = max(y, y_min); for (unsigned int runner = previous_y; runner != y; runner+= y_inc) img.set_pixel(i, runner, 255, 0, 0); // set line to red previous_y = y; } } void draw_line(Image& img, Point const& p1, Point const& p2) { draw_line(img, p1.x, p1.y, p2.x, p2.y); } void draw_outline(Image const& input, unsigned int degrees, string const& name) { double const rotation = (degrees / 180.0f) * M_PI; unsigned int w = 0; unsigned int h = 0; compute_output_size(input, rotation, w, h); cout << "rotation(" << degrees << ") -> " << w << " x " << h << endl; Image rotated(w, h); double const ratio = compute_ratio(input); Point tl = rotate(input, Point(0, 0), ratio, rotation, rotated); Point tr = rotate(input, Point(input.width - 1, 0), ratio, rotation, rotated); Point bl = rotate(input, Point(0, input.height - 1), ratio, rotation, rotated); Point br = rotate(input, Point(input.width - 1, input.height - 1), ratio, rotation, rotated); cout << tl << " " << tr << " " << bl << " " << br << endl; draw_line(rotated, tl, tr); draw_line(rotated, tr, br); draw_line(rotated, br, bl); draw_line(rotated, bl, tl); stringstream ss; ss << "check_lines_" << name << "_" << degrees << ".ppm"; rotated.save(ss.str()); } // // // Check // bool check_points() { Image five(5, 5); Point origin(0, 0); DPoint d1 = convert_grid_coord(five, origin); assert(d1.x == -2); assert(d1.y == -2); return true; } bool check_trigo() { Image square(500, 500); double const ratio = compute_ratio(square); cout << "ratio: " << ratio << endl; // Check that the origin of a square image is at sqrt(2) / 2 double const angle = convert_radian(square, Point(0, 0), ratio); double const sigma = 1.0e-2; if (!fequal(angle, 3 * M_PI / 4, sigma)) { cout << __LINE__ << " | Invalid angle value: " << angle << " != " << 3 * M_PI / 4 << endl; return false; } // Check that we can reverse the origin point. DPoint const abs_reverse_point = convert_abs_coord(angle, ratio); cout << "reversed abs origin: " << abs_reverse_point << endl; Point const reverse_point = convert_img_coord(square, abs_reverse_point); cout << "reversed origin in square: " << reverse_point << endl; if (abs(0.0 - reverse_point.x) > sigma) { cerr << "Reverse origin:" << endl; cout << "Invalid x value: " << reverse_point.x << " != " << 0 << endl; return false; } if (abs(0.0 - reverse_point.y) > sigma) { cerr << "Reverse origin:" << endl; cout << "Invalid y value: " << reverse_point.y << " != " << 0 << endl; return false; } // Check that when rotating the origin by 45 degrees double const rotation = M_PI / 4; // 45 degrees unsigned int w = 0; unsigned int h = 0; compute_output_size(square, rotation, w, h); // failed check: is precision an issue? if (true) { if (!fequal(w, square.width * sqrt(2), sigma * square.width) || !fequal(h, square.height * sqrt(2), sigma * square.height)) { cerr << "Invalid rotated image dimensions " << w << " x " << h << endl; cerr << " expected " << (int) ceil(square.width * sqrt(2)) << " x " << (int) ceil(square.height * sqrt(2)) << endl; return false; } Image rotated(w, h); DPoint const a_p45 = convert_abs_coord(angle + rotation, ratio); Point const p45 = convert_img_coord(rotated, a_p45); if (!fequal(0, p45.x, sigma)) { cerr << __LINE__ << " > Rotation origin by 45 degrees:" << endl; cerr << " invalid x value: " << p45.x << " != " << 0 << endl; cerr << " absolute point: " << a_p45 << endl; cerr << " relative point: " << p45 << endl; return false; } if (!fequal(p45.y, h / 2.0f - 1, sigma)) { cerr << __LINE__ << " > Rotation origin by 45 degrees:" << endl; cerr << "Invalid y value: " << p45.y << " != " << h / 2.0f - 1 << endl; cerr << " absolute point: " << a_p45 << endl; cerr << " relative point: " << p45 << endl; return false; } } return true; } void check_lines() { Image const square(500, 500); draw_outline(square, 22, "square"); draw_outline(square, 33, "square"); draw_outline(square, 45, "square"); draw_outline(square, 90, "square"); Image const rect1(640, 480); draw_outline(rect1, 22, "rect1"); draw_outline(rect1, 33, "rect1"); draw_outline(rect1, 45, "rect1"); draw_outline(rect1, 90, "rect1"); } // // // Main // int main() { check_points(); if (!check_trigo()) return 1; check_lines(); return 0; Image img("img/luigi.ppm"); Image rotated = rotate(img, 30); rotated.save("rotated.ppm"); return 0; }