#include #include #include #include #include #include #include #include #include using namespace std; template struct TPoint { T x; T y; TPoint(T a, T b) : x(a) , y(b) {} }; typedef TPoint Point; typedef TPoint DPoint; // absolute point, can be negative template std::basic_ostream& operator << (std::basic_ostream& o, TPoint const& p) { o << "(" << p.x << ", " << p.y << ")"; return o; } struct Image { unsigned int width; unsigned int height; uint8_t* buffer; Image() : width(0) , height(0) , buffer(NULL) {} Image(unsigned int w, unsigned int h) { this->width = w; this->height = h; buffer = new uint8_t[width * height * 3]; memset(buffer, 0, width * height * 3 * sizeof (uint8_t)); } Image(string const& path) : Image() { ifstream is(path); if (!is.is_open()) { cerr << "Cannot open file '" << path << "'" << endl; abort(); } if (!this->read_header(is)) { cerr << "Invalid header." << endl; abort(); } if (!this->read_body(is)) { delete buffer; buffer = nullptr; cerr << "Invalid header." << endl; abort(); } } bool save(string const& path) const { ofstream os(path); if (!os.is_open()) { cerr << "Cannot open file '" << path << "'" << endl; return false; } this->write_header(os); this->write_body(os); return true; } void set_pixel(unsigned int x, unsigned int y, uint8_t r, uint8_t g, uint8_t b) { if (x >= width || y >= height) { // cerr << __LINE__ << " | Point (" << x << ", " << y << ") out of bounds" << endl; // cerr << " Image dimensions: " << width << " x " << height << endl; // assert(false); return; } int index = (y * width + x) * 3; buffer[index++] = r; buffer[index++] = g; buffer[index++] = b; } void set_pixel(Point const& p, uint8_t r, uint8_t g, uint8_t b) { this->set_pixel(p.x, p.y, r, g, b); } protected: bool read_header(std::ifstream& istr) { // check magic if (istr.get() != 'P' ) { return false; } char type = static_cast(istr.get()); if (type != '6') { return false; } if (istr.get() != '\n') { return false; } // skip comments while (istr.peek() == '#') { std::string line; std::getline(istr, line); } // get size istr >> width >> height; if (width == 0 || height == 0) { return false; } // get maxvalue if (istr.get() != '\n') { return false; } int max_value = -1; istr >> max_value; if (max_value > 255) { return false; } if (istr.get() != '\n') { return false; } // cout << "width: " << width << endl; // cout << "height: " << height << endl; return true; } bool write_header(std::ofstream& ostr) const { ostr << "P6" << endl; ostr << width << " " << height << endl; ostr << "255" << endl; return true; } virtual bool read_body(std::ifstream& istr) { unsigned int const nb_pixels = width * height; buffer = new uint8_t[nb_pixels * 3]; uint8_t* buf_index = buffer; for (unsigned int i = 0; i < nb_pixels * 3; ++i) { *buf_index = istr.get(); ++buf_index; } return true; } virtual bool write_body(std::ofstream& ostr) const { unsigned int const nb_pixels = width * height; uint8_t* buf_index = buffer; for (unsigned int i = 0; i < nb_pixels * 3; ++i) { ostr << (char) *buf_index; ++buf_index; } return true; } }; template struct TiledImage : public Image { uint8_t** tiles; unsigned int static const tile_w = W; unsigned int static const tile_h = H; unsigned int static const tile_size = W * H; unsigned int nb_col_tile; unsigned int nb_row_tile; TiledImage() : Image() , tiles(NULL) , nb_col_tile(0) , nb_row_tile(0) {} TiledImage(unsigned int w, unsigned int h) { allocate_memory(w, h); } TiledImage(string const& path) : TiledImage() { ifstream is(path); if (!is.is_open()) { cerr << "Cannot open file '" << path << "'" << endl; abort(); } if (!this->read_header(is)) { cerr << "Invalid header." << endl; abort(); } if (!this->read_body(is)) { // TODO: delete tiles cerr << "Invalid header." << endl; abort(); } } uint8_t* access_pixel(unsigned int x, unsigned int y) { if (x >= width || y >= height) return nullptr; unsigned int const tile_width = tile_w * 3; unsigned int const tile_index = (y / tile_h) * nb_col_tile + (x / tile_w); uint8_t* tile = tiles[tile_index]; unsigned int const tile_j = y % tile_h; unsigned int const tile_i = x % tile_w; return tile + tile_j * tile_width + (tile_i * 3); } uint8_t const* access_pixel(unsigned int x, unsigned int y) const { if (x >= width || y >= height) return nullptr; unsigned int const tile_width = tile_w * 3; unsigned int const tile_index = (y / tile_h) * nb_col_tile + (x / tile_w); //cout << "tile index: " << tile_index << endl; uint8_t* tile = tiles[tile_index]; unsigned int const tile_j = y % tile_h; unsigned int const tile_i = x % tile_w; return tile + tile_j * tile_width + (tile_i * 3); } void print_tile(unsigned int index) const { cout << "Tile[" << index << "]" << endl; uint8_t const* tile = tiles[index]; unsigned int const tile_width = tile_w * 3; for (unsigned int j = 0; j < tile_h; ++j) { for (unsigned int i = 0; i < tile_w; ++i) { if (i != 0) cout << ", "; uint8_t const* p = tile + j * tile_width + i * 3; cout << (int) *p << " " << (int) *(p + 1) << " " << (int) *(p + 2); } cout << endl; } cout << endl; } protected: void allocate_memory(unsigned int w, unsigned int h) { width = w; height = h; nb_col_tile = width / tile_w; if (width % tile_w != 0) ++nb_col_tile; nb_row_tile = height / tile_h; if (height % tile_h != 0) ++nb_row_tile; unsigned int const nb_tiles = nb_col_tile * nb_row_tile; tiles = new uint8_t*[nb_tiles]; for (unsigned int i = 0; i < nb_tiles; ++i) { tiles[i] = new uint8_t[tile_w * tile_h * 3]; memset(tiles[i], 0, tile_w * tile_h * 3 * sizeof (uint8_t)); } } virtual bool read_body(std::ifstream& istr) { this->allocate_memory(width, height); // Pixel loading for (unsigned int j = 0; j < height; ++j) for (unsigned int i = 0; i < width; ++i) { uint8_t* tile = this->access_pixel(i, j); *(tile++) = istr.get(); *(tile++) = istr.get(); *(tile++) = istr.get(); } return true; } virtual bool write_body(std::ofstream& ostr) const override { for (unsigned int j = 0; j < height; ++j) for (unsigned int i = 0; i < width; ++i) { uint8_t const* tile = this->access_pixel(i, j); ostr << (char) *(tile++); ostr << (char) *(tile++); ostr << (char) *(tile++); } return true; } }; // // // Trigonometry // DPoint convert_grid_coord(Image const& img, Point const& p) { return DPoint(p.x - img.width / 2.0f + 0.5, p.y - img.height / 2.0f + 0.5); } double convert_radian(Image const& img, Point const& p, double const ratio) { DPoint centered = convert_grid_coord(img, p); double const cos_value = centered.x * ratio; double const sin_value = - (centered.y * ratio); double angle = acos(cos_value); if (sin_value < 0) { angle = (2 * M_PI) - angle; } return angle; } DPoint convert_abs_coord(double const angle, double const ratio) { return DPoint(cos(angle) / ratio, - sin(angle) / ratio); } Point convert_img_coord(Image const& img, DPoint const& p) { int x = round(p.x + (img.width / 2.0f) - 0.5); int y = round(p.y + (img.height / 2.0f) - 0.5); return Point(x, y); } DPoint convert_img_coord_precision(Image const& img, DPoint const& p) { int x = p.x + (img.width / 2.0f) - 0.5; int y = p.y + (img.height / 2.0f) - 0.5; return DPoint(x, y); } void convert_abs_to_polar_coord(DPoint const& p, double& angle, double& dist) { angle = atan2(-p.y, p.x); dist = sqrt(p.x * p.x + p.y * p.y); } DPoint convert_polar_to_grid_coord(double const angle, double const distance) { return DPoint(cos(angle) * distance, - (sin(angle) * distance)); } double compute_ratio(Image const& img) { double const trigo_length = (sqrt(img.width * img.width + img.height * img.height) - 1) / 2; return 1.0f / trigo_length; } void compute_output_size(Image const& src, double const rotation, unsigned int& width, unsigned int& height) { double const ratio = compute_ratio(src); double min_w = 0; double max_w = 0; double min_h = 0; double max_h = 0; Point p(0, 0); double angle = convert_radian(src, p, ratio); DPoint tl = convert_abs_coord(angle + rotation, ratio); min_w = min(min_w, tl.x); max_w = max(max_w, tl.x); min_h = min(min_h, tl.y); max_h = max(max_h, tl.y); p = Point(src.width - 1, 0); angle = convert_radian(src, p, ratio); DPoint tr = convert_abs_coord(angle + rotation, ratio); min_w = min(min_w, tr.x); max_w = max(max_w, tr.x); min_h = min(min_h, tr.y); max_h = max(max_h, tr.y); p = Point(0, src.height - 1); angle = convert_radian(src, p, ratio); DPoint bl = convert_abs_coord(angle + rotation, ratio); min_w = min(min_w, bl.x); max_w = max(max_w, bl.x); min_h = min(min_h, bl.y); max_h = max(max_h, bl.y); p = Point(src.width - 1, src.height - 1); angle = convert_radian(src, p, ratio); DPoint br = convert_abs_coord(angle + rotation, ratio); min_w = min(min_w, br.x); max_w = max(max_w, br.x); min_h = min(min_h, br.y); max_h = max(max_h, br.y); width = (int) (max_w - min_w) + 1; height = (int) (max_h - min_h) + 1; } // // // Math approximation // void round_if_very_small(double& d) { if (abs(d) < 1.0e-10) d = 0.0; if (abs(d - 1) < 1.0e-10) d = 1.0; } inline bool fequal(float a, float b, float sigma) { return abs(a - b) < sigma; } // // // Image rotation // DPoint get_mapped_point(Image const& src, Point const& p, double const rotation) { DPoint const d = convert_grid_coord(src, p); double p_angle = 0; double dist = 0; convert_abs_to_polar_coord(d, p_angle, dist); return convert_polar_to_grid_coord(p_angle + rotation, dist); } inline void rotate_pixel(Image const& src, Image& rotated, DPoint const& src_rotated_point, Point const& rot_point, unsigned int const src_limit, unsigned int const rot_limit) { unsigned int src_index = ((int) src_rotated_point.y * src.width + (int) src_rotated_point.x) * 3; unsigned int rot_index = (rot_point.y * rotated.width + rot_point.x) * 3; // Out-of-bounds check if (src_index >= src_limit || rot_index >= rot_limit) return; // Bilinear interpolation unsigned int src_index_1 = src_index; unsigned int src_index_2 = src_index_1 + 3; unsigned int src_index_3 = src_index_1 + 3 * src.width; unsigned int src_index_4 = src_index_3 + 3; if (src_index_4 >= src_limit) return; double x_delta = src_rotated_point.x - floor(src_rotated_point.x); round_if_very_small(x_delta); double y_delta = src_rotated_point.y - floor(src_rotated_point.y); round_if_very_small(y_delta); // special case if we can directly map the src to the dest if (x_delta == 0 && y_delta == 0) { memcpy(&rotated.buffer[rot_index], &src.buffer[src_index], 3 * sizeof (uint8_t)); return; } // SIMD __m128 const x_d = _mm_set_ps1(x_delta); __m128 const inv_x_d = _mm_set_ps1(1 - x_delta); __m128 top_left = _mm_set_ps(src.buffer[src_index_1], src.buffer[src_index_1 + 1], src.buffer[src_index_1 + 2], 0.0); __m128 top_right = _mm_set_ps(src.buffer[src_index_2], src.buffer[src_index_2 + 1], src.buffer[src_index_2 + 2], 0.0); top_left = _mm_mul_ps(top_left, inv_x_d); top_right = _mm_mul_ps(top_right, x_d); top_left = _mm_add_ps(top_left, top_right); __m128 bottom_left = _mm_set_ps(src.buffer[src_index_3], src.buffer[src_index_3 + 1], src.buffer[src_index_3 + 2], 0.0); __m128 bottom_right = _mm_set_ps(src.buffer[src_index_4], src.buffer[src_index_4 + 1], src.buffer[src_index_4 + 2], 0.0); bottom_left = _mm_mul_ps(bottom_left, inv_x_d); bottom_right = _mm_mul_ps(bottom_right, x_d); bottom_left = _mm_add_ps(bottom_left, bottom_right); __m128 const y_d = _mm_set_ps1(y_delta); __m128 const inv_y_d = _mm_set_ps1(1 - y_delta); top_left = _mm_mul_ps(top_left, inv_y_d); bottom_left = _mm_mul_ps(bottom_left, y_d); top_left = _mm_add_ps(top_left, bottom_left); // convert float values to uint8_t rotated.buffer[rot_index] = top_left[3]; rotated.buffer[rot_index + 1] = top_left[2]; rotated.buffer[rot_index + 2] = top_left[1]; } Image rotate(Image const& src, double angle) { double const rotation = (angle / 180.0f) * M_PI; unsigned int w = 0; unsigned int h = 0; compute_output_size(src, rotation, w, h); Image rotated(w, h); // corner points in rotated image // TODO: add one ligne for smooth border DPoint const tl_grid = get_mapped_point(src, Point(0, 0), rotation); Point const tl = convert_img_coord(rotated, tl_grid); DPoint const tr_grid = get_mapped_point(src, Point(src.width - 1, 0), rotation); Point const tr = convert_img_coord(rotated, tr_grid); DPoint const bl_grid = get_mapped_point(src, Point(0, src.height - 1), rotation); Point const bl = convert_img_coord(rotated, bl_grid); // corner points in source image DPoint src_tl = get_mapped_point(rotated, tl, -rotation); src_tl = convert_img_coord_precision(src, src_tl); DPoint src_origin = get_mapped_point(rotated, Point(0, 0), -rotation); DPoint src_delta_x = get_mapped_point(rotated, Point(1, 0), -rotation); DPoint src_delta_y = get_mapped_point(rotated, Point(0, 1), -rotation); src_delta_x.x = src_delta_x.x - src_origin.x; src_delta_x.y = src_delta_x.y - src_origin.y; round_if_very_small(src_delta_x.x); round_if_very_small(src_delta_x.y); src_delta_y.x = src_delta_y.x - src_origin.x; src_delta_y.y = src_delta_y.y - src_origin.y; round_if_very_small(src_delta_y.x); round_if_very_small(src_delta_y.y); // cout << "src delta x = " << src_delta_x << endl; // cout << "src delta y = " << src_delta_y << endl; // // steps for first column in source image (y) int origin_nb_steps = max(abs(bl.x - tl.x), abs(bl.y - tl.y)); // // steps for line in source image (x) int line_nb_steps = max(abs(tr.x - tl.x), abs(tr.y - tl.y)); // steps for first column in rotated image (y) DPoint rotated_step((bl.x - tl.x) / (float) origin_nb_steps, (bl.y - tl.y) / (float) origin_nb_steps); // steps for line in rotated image (x) DPoint bresenham((tr.x - tl.x) / (float) line_nb_steps, (tr.y - tl.y) / (float) line_nb_steps); unsigned int const src_limit = src.width * src.height * 3; unsigned int const rot_limit = rotated.width * rotated.height * 3; for (int y_i = 0; y_i <= (int) origin_nb_steps; ++y_i) { // first column origin Point const rot_origin(tl.x + y_i * rotated_step.x, tl.y + y_i * rotated_step.y); Point previous = rot_origin; for (int x_i = 0; x_i <= (int) line_nb_steps; ++x_i) { Point rot_point(rot_origin.x + x_i * bresenham.x, rot_origin.y + x_i * bresenham.y); Point const delta(rot_point.x - tl.x, rot_point.y - tl.y); DPoint src_rotated_point(src_tl.x + delta.x * src_delta_x.x + delta.y * src_delta_y.x, src_tl.y + delta.x * src_delta_x.y + delta.y * src_delta_y.y); rotate_pixel(src, rotated, src_rotated_point, rot_point, src_limit, rot_limit); if (previous.x != rot_point.x && previous.y != rot_point.y) { int y_slope = rot_point.y > previous.y ? 1 : -1; int tmp_y = rot_point.y; rot_point.y = previous.y; src_rotated_point.x -= y_slope * src_delta_y.x; src_rotated_point.y -= y_slope * src_delta_y.y; rotate_pixel(src, rotated, src_rotated_point, rot_point, src_limit, rot_limit); rot_point.y = tmp_y; } previous = rot_point; } } return rotated; } // // // Tile rotation // template void rotate_pixel(TiledImage const& src, TiledImage& rotated, DPoint const& src_rotated_point, unsigned int rot_tile_index, unsigned int rot_index) { uint8_t const* src_index_1 = src.access_pixel((int) src_rotated_point.x, (int) src_rotated_point.y); double x_delta = src_rotated_point.x - (int) src_rotated_point.x; round_if_very_small(x_delta); double y_delta = src_rotated_point.y - (int) src_rotated_point.y; round_if_very_small(y_delta); // special case if we can directly map the src to the dest if (x_delta == 0 && y_delta == 0) { uint8_t* rot_tile = rotated.tiles[rot_tile_index]; memcpy(&rot_tile[rot_index], src_index_1, 3 * sizeof (uint8_t)); return; } uint8_t const* src_index_2 = src.access_pixel((int) src_rotated_point.x + 1, (int) src_rotated_point.y); uint8_t const* src_index_3 = src.access_pixel((int) src_rotated_point.x, (int) src_rotated_point.y + 1); uint8_t const* src_index_4 = src.access_pixel((int) src_rotated_point.x + 1, (int) src_rotated_point.y + 1); // FIXME: deal with image border if (!src_index_1 || !src_index_2 || !src_index_3 || !src_index_4) return; // SIMD __m128 const x_d = _mm_set_ps1(x_delta); __m128 const inv_x_d = _mm_set_ps1(1 - x_delta); __m128 top_left = _mm_set_ps(*src_index_1, *(src_index_1 + 1), *(src_index_1 + 2), 0.0); __m128 top_right = _mm_set_ps(*src_index_2, *(src_index_2 + 1), *(src_index_2 + 2), 0.0); top_left = _mm_mul_ps(top_left, inv_x_d); top_right = _mm_mul_ps(top_right, x_d); top_left = _mm_add_ps(top_left, top_right); __m128 bottom_left = _mm_set_ps(*src_index_3, *(src_index_3 + 1), *(src_index_3 + 2), 0.0); __m128 bottom_right = _mm_set_ps(*src_index_4, *(src_index_4 + 1), *(src_index_4 + 2), 0.0); bottom_left = _mm_mul_ps(bottom_left, inv_x_d); bottom_right = _mm_mul_ps(bottom_right, x_d); bottom_left = _mm_add_ps(bottom_left, bottom_right); __m128 const y_d = _mm_set_ps1(y_delta); __m128 const inv_y_d = _mm_set_ps1(1 - y_delta); top_left = _mm_mul_ps(top_left, inv_y_d); bottom_left = _mm_mul_ps(bottom_left, y_d); top_left = _mm_add_ps(top_left, bottom_left); // convert float values to uint8_t uint8_t* rot_tile = rotated.tiles[rot_tile_index]; rot_tile[rot_index] = top_left[3]; rot_tile[rot_index + 1] = top_left[2]; rot_tile[rot_index + 2] = top_left[1]; } template TiledImage rotate(TiledImage const& src, double angle) { double const rotation = (angle / 180.0f) * M_PI; unsigned int w = 0; unsigned int h = 0; compute_output_size(src, rotation, w, h); TiledImage rotated(w, h); DPoint src_origin = get_mapped_point(rotated, Point(0, 0), -rotation); DPoint src_delta_x = get_mapped_point(rotated, Point(1, 0), -rotation); DPoint src_delta_y = get_mapped_point(rotated, Point(0, 1), -rotation); src_delta_x.x = src_delta_x.x - src_origin.x; src_delta_x.y = src_delta_x.y - src_origin.y; round_if_very_small(src_delta_x.x); round_if_very_small(src_delta_x.y); src_delta_y.x = src_delta_y.x - src_origin.x; src_delta_y.y = src_delta_y.y - src_origin.y; round_if_very_small(src_delta_y.x); round_if_very_small(src_delta_y.y); DPoint const rot_origin_in_src_grid = get_mapped_point(rotated, Point(0, 0), -rotation); DPoint const rot_origin_in_src = convert_img_coord_precision(src, rot_origin_in_src_grid); for (unsigned int y = 0; y < rotated.nb_row_tile; ++y) { for (unsigned int x = 0; x < rotated.nb_col_tile; ++x) { unsigned int const rot_tile_index = y * rotated.nb_col_tile + x; for (unsigned int j = 0; j < H; ++j) { int const y_index = y * H + j; int x_index = x * W; DPoint src_rotated_point(rot_origin_in_src.x + x_index * src_delta_x.x + y_index * src_delta_y.x, rot_origin_in_src.y + x_index * src_delta_x.y + y_index * src_delta_y.y); for (unsigned int i = 0; i < W; ++i, ++x_index) { unsigned int const rot_index = (j * W + i) * 3; Point const rot_point(x_index, y_index); if (src_rotated_point.x < 0 || src_rotated_point.x > src.width || src_rotated_point.y < 0 || src_rotated_point.y > src.height) continue; rotate_pixel(src, rotated, src_rotated_point, rot_tile_index, rot_index); src_rotated_point.x += src_delta_x.x; src_rotated_point.y += src_delta_x.y; } } } } return rotated; } // // // Check // bool check_points() { Image five(5, 5); Point origin(0, 0); DPoint d1 = convert_grid_coord(five, origin); assert(d1.x == -2); assert(d1.y == -2); return true; } bool check_trigo() { Image square(500, 500); double const ratio = compute_ratio(square); double const sigma = 1.0e-2; if (!fequal(ratio, 1 / 707.106, sigma)) { cerr << __LINE__ << " | Invalid ratio: " << ratio << " != " << 1 / 707.106 << endl; return false; } // Check that the origin of a square image is at sqrt(2) / 2 double const angle = convert_radian(square, Point(0, 0), ratio); if (!fequal(angle, 3 * M_PI / 4, sigma)) { cerr << __LINE__ << " | Invalid angle value: " << angle << " != " << 3 * M_PI / 4 << endl; return false; } // Check that we can reverse the origin point. DPoint const abs_reverse_point = convert_abs_coord(angle, ratio); Point const reverse_point = convert_img_coord(square, abs_reverse_point); if (!fequal(0.0, reverse_point.x, sigma) || !fequal(0.0, reverse_point.y, sigma)) { cerr << __LINE__ << "Reverse origin fail" << endl; cerr << " " << reverse_point << " != (0, 0)" << endl; cerr << " abs point " << abs_reverse_point << endl; return false; } // Check that when rotating the origin by 45 degrees double const rotation = M_PI / 4; // 45 degrees unsigned int w = 0; unsigned int h = 0; compute_output_size(square, rotation, w, h); if (!fequal(w, square.width * sqrt(2), sigma * square.width) || !fequal(h, square.height * sqrt(2), sigma * square.height)) { cerr << "Invalid rotated image dimensions " << w << " x " << h << endl; cerr << " expected " << (int) ceil(square.width * sqrt(2)) << " x " << (int) ceil(square.height * sqrt(2)) << endl; return false; } Image rotated(w, h); DPoint const a_p45 = convert_abs_coord(angle + rotation, ratio); Point const p45 = convert_img_coord(rotated, a_p45); if (!fequal(0, p45.x, sigma)) { cerr << __LINE__ << " > Rotation origin by 45 degrees:" << endl; cerr << " invalid x value: " << p45.x << " != " << 0 << endl; cerr << " absolute point: " << a_p45 << endl; cerr << " relative point: " << p45 << endl; return false; } if (!fequal(p45.y, (h - 1) / 2.0f, sigma)) { cerr << __LINE__ << " > Rotation origin by 45 degrees:" << endl; cerr << "Invalid y value: " << p45.y << " != " << (h - 1) / 2.0f << endl; cerr << " absolute point: " << a_p45 << endl; cerr << " relative point: " << p45 << endl; return false; } // Polar coordinates { DPoint const d(-42.5, 37.5); double angle = 0; double dist = 0; convert_abs_to_polar_coord(d, angle, dist); DPoint const reversed = convert_polar_to_grid_coord(angle, dist); if (!fequal(d.x, reversed.x, sigma) || !fequal(d.y, reversed.y, sigma)) { cerr << __LINE__ << " > Reverse polar coordinates:" << endl; cerr << reversed << " != " << d << endl; cerr << "polar (" << angle << ", " << dist << ")" << endl; return false; } } return true; } bool check_90(string const& path) { Image const src(path); Image const rotated = rotate(src, 90); for (unsigned int y = 0; y < rotated.height; ++y) { for (unsigned int x = 0; x < rotated.width; ++x) { unsigned rot_index = (y * rotated.width + x) * 3; unsigned src_index = (x * src.width + (src.width - 1 - y)) * 3; if (memcmp(&rotated.buffer[rot_index], &src.buffer[src_index], 3 * sizeof (uint8_t)) != 0) { Point r(x, y); Point s((src.width - 1 - y), x); cerr << __LINE__ << " | R: " << r << " != S:" << s << endl; cerr << "R dim: " << rotated.width << " x " << rotated.height << endl; cerr << "S dim: " << src.width << " x " << src.height << endl; return false; } } } return true; } // // // Main // string get_save_path(string const& base, unsigned int i) { stringstream filename; //filename << "/tmp/"; filename << base << "_"; if (i < 100) filename << "0"; if (i < 10) filename << "0"; filename << i << ".ppm"; return filename.str(); } int main(int argc, char* argv[]) { if (argc < 2) { cout << "Usage: " << argv[0] << " image.ppm" << endl; return 1; } bool perform_check = true; if (perform_check) { if (!check_points()) return 1; if (!check_trigo()) return 1; if (!check_90(argv[1])) { cerr << __LINE__ << " | 90 degrees check failed" << endl << endl; // return 1; } } Image img(argv[1]); TiledImage<32, 32> tiled_img(argv[1]); for (double rotation = 0; rotation < 360; rotation += 45) { // No tile auto const before = chrono::high_resolution_clock::now(); Image const rotated = rotate(img, rotation); auto const after = chrono::high_resolution_clock::now(); auto const duration_ms = std::chrono::duration_cast(after - before); // Tile auto const before_tiled = chrono::high_resolution_clock::now(); auto const rotated_tiled = rotate(tiled_img, rotation); auto const after_tiled = chrono::high_resolution_clock::now(); auto const duration_ms_tiled = std::chrono::duration_cast(after_tiled - before_tiled); cout << "rotate(" << rotation << "): " << duration_ms.count() << " ms" << endl; cout << "tiled: " << duration_ms_tiled.count() << " ms" << endl; cout << "speedup: " << (int) (((float) duration_ms.count() / duration_ms_tiled.count() - 1) * 100) << "%" << endl << endl; rotated->save(get_save_path("rotated", rotation)); rotated_tiled->save(get_save_path("rotated_tiled", rotation)); } return 0; }