rotate-me-fast/rotation.cpp

1051 lines
28 KiB
C++

#include <string>
#include <fstream>
#include <iostream>
#include <sstream>
#include <cmath>
#include <cassert>
#include <cstring>
#include <chrono>
#include <cstdlib>
#include <xmmintrin.h>
#include <emmintrin.h>
using namespace std;
//
//
// Point
//
template <typename T>
struct TPoint {
T x;
T y;
TPoint(T a, T b)
: x(a)
, y(b)
{}
};
typedef TPoint<int> Point;
typedef TPoint<double> DPoint; // absolute point, can be negative
template<typename Elem, typename Traits, typename T>
std::basic_ostream<Elem, Traits>& operator << (std::basic_ostream<Elem, Traits>& o, TPoint<T> const& p)
{
o << "(" << p.x << ", " << p.y << ")";
return o;
}
//
//
// Image
//
struct Image {
unsigned int width;
unsigned int height;
uint8_t* buffer;
Image()
: width(0)
, height(0)
, buffer(NULL)
{}
virtual ~Image()
{
delete [] buffer;
}
Image(unsigned int w, unsigned int h)
{
this->width = w;
this->height = h;
buffer = new uint8_t[width * height * 3];
memset(buffer, 0, width * height * 3 * sizeof (uint8_t));
}
Image(string const& path)
: Image()
{
ifstream is(path);
if (!is.is_open())
{
cerr << "Cannot open file '" << path << "'" << endl;
abort();
}
if (!this->read_header(is))
{
cerr << "Invalid header." << endl;
abort();
}
if (!this->read_body(is))
{
delete buffer;
buffer = nullptr;
cerr << "Invalid header." << endl;
abort();
}
}
bool save(string const& path) const
{
ofstream os(path);
if (!os.is_open())
{
cerr << "Cannot open file '" << path << "'" << endl;
return false;
}
this->write_header(os);
this->write_body(os);
return true;
}
void set_pixel(unsigned int x, unsigned int y, uint8_t r, uint8_t g, uint8_t b)
{
if (x >= width || y >= height)
{
// cerr << __LINE__ << " | Point (" << x << ", " << y << ") out of bounds" << endl;
// cerr << " Image dimensions: " << width << " x " << height << endl;
// assert(false);
return;
}
int index = (y * width + x) * 3;
buffer[index++] = r;
buffer[index++] = g;
buffer[index++] = b;
}
void set_pixel(Point const& p, uint8_t r, uint8_t g, uint8_t b)
{
this->set_pixel(p.x, p.y, r, g, b);
}
protected:
bool read_header(std::ifstream& istr)
{
// check magic
if (istr.get() != 'P' )
{
return false;
}
char type = static_cast<char>(istr.get());
if (type != '6')
{
return false;
}
if (istr.get() != '\n')
{
return false;
}
// skip comments
while (istr.peek() == '#')
{
std::string line;
std::getline(istr, line);
}
// get size
istr >> width >> height;
if (width == 0 || height == 0)
{
return false;
}
// get maxvalue
if (istr.get() != '\n')
{
return false;
}
int max_value = -1;
istr >> max_value;
if (max_value > 255)
{
return false;
}
if (istr.get() != '\n')
{
return false;
}
// cout << "width: " << width << endl;
// cout << "height: " << height << endl;
return true;
}
bool write_header(std::ofstream& ostr) const
{
ostr << "P6" << endl;
ostr << width << " " << height << endl;
ostr << "255" << endl;
return true;
}
virtual bool read_body(std::ifstream& istr)
{
unsigned int const nb_pixels = width * height;
buffer = new uint8_t[nb_pixels * 3];
uint8_t* buf_index = buffer;
for (unsigned int i = 0; i < nb_pixels * 3; ++i)
{
*buf_index = istr.get();
++buf_index;
}
return true;
}
virtual bool write_body(std::ofstream& ostr) const
{
unsigned int const nb_pixels = width * height;
uint8_t* buf_index = buffer;
for (unsigned int i = 0; i < nb_pixels * 3; ++i)
{
ostr << (char) *buf_index;
++buf_index;
}
return true;
}
};
template<unsigned int W, unsigned int H>
struct TiledImage : public Image {
uint8_t** tiles;
unsigned int static const tile_w = W;
unsigned int static const tile_h = H;
unsigned int static const tile_size = W * H;
unsigned int nb_col_tile;
unsigned int nb_row_tile;
TiledImage()
: Image()
, tiles(NULL)
, nb_col_tile(0)
, nb_row_tile(0)
{}
~TiledImage()
{
unsigned int const nb_tiles = nb_col_tile * nb_row_tile;
for (unsigned int i = 0; i < nb_tiles; ++i)
{
delete [] tiles[i];
}
delete [] tiles;
}
TiledImage(unsigned int w, unsigned int h)
{
allocate_memory(w, h);
}
TiledImage(string const& path)
: TiledImage()
{
ifstream is(path);
if (!is.is_open())
{
cerr << "Cannot open file '" << path << "'" << endl;
abort();
}
if (!this->read_header(is))
{
cerr << "Invalid header." << endl;
abort();
}
if (!this->read_body(is))
{
// TODO: delete tiles
cerr << "Invalid header." << endl;
abort();
}
}
uint8_t*
access_pixel(unsigned int x, unsigned int y)
{
if (x >= width || y >= height)
return nullptr;
unsigned int const tile_width = tile_w * 3;
unsigned int const tile_index = (y / tile_h) * nb_col_tile + (x / tile_w);
uint8_t* tile = tiles[tile_index];
unsigned int const tile_j = y % tile_h;
unsigned int const tile_i = x % tile_w;
return tile + tile_j * tile_width + (tile_i * 3);
}
uint8_t const*
access_pixel(unsigned int x, unsigned int y) const
{
if (x >= width || y >= height)
return nullptr;
unsigned int const tile_width = tile_w * 3;
unsigned int const tile_index = (y / tile_h) * nb_col_tile + (x / tile_w);
//cout << "tile index: " << tile_index << endl;
uint8_t* tile = tiles[tile_index];
unsigned int const tile_j = y % tile_h;
unsigned int const tile_i = x % tile_w;
return tile + tile_j * tile_width + (tile_i * 3);
}
void
print_tile(unsigned int index) const
{
cout << "Tile[" << index << "]" << endl;
uint8_t const* tile = tiles[index];
unsigned int const tile_width = tile_w * 3;
for (unsigned int j = 0; j < tile_h; ++j)
{
for (unsigned int i = 0; i < tile_w; ++i)
{
if (i != 0)
cout << ", ";
uint8_t const* p = tile + j * tile_width + i * 3;
cout << (int) *p << " " << (int) *(p + 1) << " " << (int) *(p + 2);
}
cout << endl;
}
cout << endl;
}
protected:
void allocate_memory(unsigned int w, unsigned int h)
{
width = w;
height = h;
nb_col_tile = width / tile_w;
if (width % tile_w != 0)
++nb_col_tile;
nb_row_tile = height / tile_h;
if (height % tile_h != 0)
++nb_row_tile;
unsigned int const nb_tiles = nb_col_tile * nb_row_tile;
tiles = new uint8_t*[nb_tiles];
for (unsigned int i = 0; i < nb_tiles; ++i)
{
tiles[i] = new uint8_t[tile_w * tile_h * 3];
memset(tiles[i], 0, tile_w * tile_h * 3 * sizeof (uint8_t));
}
}
virtual bool read_body(std::ifstream& istr)
{
this->allocate_memory(width, height);
// Pixel loading
for (unsigned int j = 0; j < height; ++j)
for (unsigned int i = 0; i < width; ++i)
{
uint8_t* tile = this->access_pixel(i, j);
*(tile++) = istr.get();
*(tile++) = istr.get();
*(tile++) = istr.get();
}
return true;
}
virtual bool write_body(std::ofstream& ostr) const override
{
for (unsigned int j = 0; j < height; ++j)
for (unsigned int i = 0; i < width; ++i)
{
uint8_t const* tile = this->access_pixel(i, j);
ostr << (char) *(tile++);
ostr << (char) *(tile++);
ostr << (char) *(tile++);
}
return true;
}
};
//
//
// Trigonometry
//
DPoint convert_grid_coord(Image const& img, Point const& p)
{
return DPoint(p.x - img.width / 2.0f + 0.5, p.y - img.height / 2.0f + 0.5);
}
double convert_radian(Image const& img, Point const& p, double const ratio)
{
DPoint centered = convert_grid_coord(img, p);
double const cos_value = centered.x * ratio;
double const sin_value = - (centered.y * ratio);
double angle = acos(cos_value);
if (sin_value < 0)
{
angle = (2 * M_PI) - angle;
}
return angle;
}
DPoint convert_abs_coord(double const angle, double const ratio)
{
return DPoint(cos(angle) / ratio, - sin(angle) / ratio);
}
Point convert_img_coord(Image const& img, DPoint const& p)
{
int x = round(p.x + (img.width / 2.0f) - 0.5);
int y = round(p.y + (img.height / 2.0f) - 0.5);
return Point(x, y);
}
DPoint convert_img_coord_precision(Image const& img, DPoint const& p)
{
int x = p.x + (img.width / 2.0f) - 0.5;
int y = p.y + (img.height / 2.0f) - 0.5;
return DPoint(x, y);
}
void convert_abs_to_polar_coord(DPoint const& p, double& angle, double& dist)
{
angle = atan2(-p.y, p.x);
dist = sqrt(p.x * p.x + p.y * p.y);
}
DPoint convert_polar_to_grid_coord(double const angle, double const distance)
{
return DPoint(cos(angle) * distance, - (sin(angle) * distance));
}
double compute_ratio(Image const& img)
{
double const trigo_length = (sqrt(img.width * img.width + img.height * img.height) - 1) / 2;
return 1.0f / trigo_length;
}
void compute_output_size(Image const& src, double const rotation, unsigned int& width, unsigned int& height)
{
double const ratio = compute_ratio(src);
double min_w = 0;
double max_w = 0;
double min_h = 0;
double max_h = 0;
Point p(0, 0);
double angle = convert_radian(src, p, ratio);
DPoint tl = convert_abs_coord(angle + rotation, ratio);
min_w = min(min_w, tl.x);
max_w = max(max_w, tl.x);
min_h = min(min_h, tl.y);
max_h = max(max_h, tl.y);
p = Point(src.width - 1, 0);
angle = convert_radian(src, p, ratio);
DPoint tr = convert_abs_coord(angle + rotation, ratio);
min_w = min(min_w, tr.x);
max_w = max(max_w, tr.x);
min_h = min(min_h, tr.y);
max_h = max(max_h, tr.y);
p = Point(0, src.height - 1);
angle = convert_radian(src, p, ratio);
DPoint bl = convert_abs_coord(angle + rotation, ratio);
min_w = min(min_w, bl.x);
max_w = max(max_w, bl.x);
min_h = min(min_h, bl.y);
max_h = max(max_h, bl.y);
p = Point(src.width - 1, src.height - 1);
angle = convert_radian(src, p, ratio);
DPoint br = convert_abs_coord(angle + rotation, ratio);
min_w = min(min_w, br.x);
max_w = max(max_w, br.x);
min_h = min(min_h, br.y);
max_h = max(max_h, br.y);
width = (int) (max_w - min_w) + 1;
height = (int) (max_h - min_h) + 1;
}
//
//
// Math approximation
//
void round_if_very_small(double& d)
{
if (abs(d) < 1.0e-10)
d = 0.0;
if (abs(d - 1) < 1.0e-10)
d = 1.0;
}
inline
bool fequal(float a, float b, float sigma)
{
return abs(a - b) < sigma;
}
//
//
// Image rotation
//
DPoint get_mapped_point(Image const& src, Point const& p, double const rotation)
{
DPoint const d = convert_grid_coord(src, p);
double p_angle = 0;
double dist = 0;
convert_abs_to_polar_coord(d, p_angle, dist);
return convert_polar_to_grid_coord(p_angle + rotation, dist);
}
inline
void rotate_pixel(Image const& src, /*uint8_t* rotated,*/
DPoint const& src_rotated_point, /*Point const& rot_point,*/
unsigned int const src_limit, unsigned int const rot_limit,
uint8_t* rotate_buffer, unsigned int rot_index)
{
unsigned int src_index = ((int) src_rotated_point.y * src.width + (int) src_rotated_point.x) * 3;
// unsigned int rot_index = (rot_point.y * rotated.width + rot_point.x) * 3;
// Out-of-bounds check
if (src_index >= src_limit
|| rot_index >= rot_limit)
return;
// Bilinear interpolation
unsigned int src_index_1 = src_index;
unsigned int src_index_2 = src_index_1 + 3;
unsigned int src_index_3 = src_index_1 + 3 * src.width;
unsigned int src_index_4 = src_index_3 + 3;
if (src_index_4 >= src_limit)
return;
double x_delta = src_rotated_point.x - floor(src_rotated_point.x);
round_if_very_small(x_delta);
double y_delta = src_rotated_point.y - floor(src_rotated_point.y);
round_if_very_small(y_delta);
// special case if we can directly map the src to the dest
if (x_delta == 0 && y_delta == 0)
{
// memcpy(&rotated.buffer[rot_index], &src.buffer[src_index], 3 * sizeof (uint8_t));
rotate_buffer[rot_index] = src.buffer[src_index];
rotate_buffer[rot_index + 1] = src.buffer[src_index + 1];
rotate_buffer[rot_index + 2] = src.buffer[src_index + 2];
return;
}
// SIMD
__m128 const x_d = _mm_set_ps1(x_delta);
__m128 const inv_x_d = _mm_set_ps1(1 - x_delta);
__m128 top_left = _mm_set_ps(src.buffer[src_index_1], src.buffer[src_index_1 + 1], src.buffer[src_index_1 + 2], 0.0);
__m128 top_right = _mm_set_ps(src.buffer[src_index_2], src.buffer[src_index_2 + 1], src.buffer[src_index_2 + 2], 0.0);
top_left = _mm_mul_ps(top_left, inv_x_d);
top_right = _mm_mul_ps(top_right, x_d);
top_left = _mm_add_ps(top_left, top_right);
__m128 bottom_left = _mm_set_ps(src.buffer[src_index_3], src.buffer[src_index_3 + 1], src.buffer[src_index_3 + 2], 0.0);
__m128 bottom_right = _mm_set_ps(src.buffer[src_index_4], src.buffer[src_index_4 + 1], src.buffer[src_index_4 + 2], 0.0);
bottom_left = _mm_mul_ps(bottom_left, inv_x_d);
bottom_right = _mm_mul_ps(bottom_right, x_d);
bottom_left = _mm_add_ps(bottom_left, bottom_right);
__m128 const y_d = _mm_set_ps1(y_delta);
__m128 const inv_y_d = _mm_set_ps1(1 - y_delta);
top_left = _mm_mul_ps(top_left, inv_y_d);
bottom_left = _mm_mul_ps(bottom_left, y_d);
top_left = _mm_add_ps(top_left, bottom_left);
// convert float values to uint8_t
rotate_buffer[rot_index] = top_left[3];
rotate_buffer[rot_index + 1] = top_left[2];
rotate_buffer[rot_index + 2] = top_left[1];
}
Image* rotate(Image const& src, double angle)
{
double const rotation = (angle / 180.0f) * M_PI;
unsigned int w = 0;
unsigned int h = 0;
compute_output_size(src, rotation, w, h);
Image* rotated = new Image(w, h);
// corner points in rotated image
// TODO: add one ligne for smooth border
DPoint const tl_grid = get_mapped_point(src, Point(0, 0), rotation);
Point const tl = convert_img_coord(*rotated, tl_grid);
DPoint const tr_grid = get_mapped_point(src, Point(src.width - 1, 0), rotation);
Point const tr = convert_img_coord(*rotated, tr_grid);
DPoint const bl_grid = get_mapped_point(src, Point(0, src.height - 1), rotation);
Point const bl = convert_img_coord(*rotated, bl_grid);
// corner points in source image
DPoint src_tl = get_mapped_point(*rotated, tl, -rotation);
src_tl = convert_img_coord_precision(src, src_tl);
DPoint const src_origin = get_mapped_point(*rotated, Point(0, 0), -rotation);
DPoint src_delta_x = get_mapped_point(*rotated, Point(1, 0), -rotation);
DPoint src_delta_y = get_mapped_point(*rotated, Point(0, 1), -rotation);
src_delta_x.x = src_delta_x.x - src_origin.x;
src_delta_x.y = src_delta_x.y - src_origin.y;
round_if_very_small(src_delta_x.x);
round_if_very_small(src_delta_x.y);
src_delta_y.x = src_delta_y.x - src_origin.x;
src_delta_y.y = src_delta_y.y - src_origin.y;
round_if_very_small(src_delta_y.x);
round_if_very_small(src_delta_y.y);
// // steps for first column in source image (y)
int origin_nb_steps = max(abs(bl.x - tl.x), abs(bl.y - tl.y));
// // steps for line in source image (x)
int line_nb_steps = max(abs(tr.x - tl.x), abs(tr.y - tl.y));
// steps for first column in rotated image (y)
DPoint const rotated_step((bl.x - tl.x) / (float) origin_nb_steps, (bl.y - tl.y) / (float) origin_nb_steps);
// steps for line in rotated image (x)
DPoint const bresenham((tr.x - tl.x) / (float) line_nb_steps, (tr.y - tl.y) / (float) line_nb_steps);
unsigned int const src_limit = src.width * src.height * 3;
unsigned int const rot_limit = rotated->width * rotated->height * 3;
// for (int y_i = 0; y_i <= (int) origin_nb_steps; ++y_i)
// {
// // first column origin
// Point const rot_origin(tl.x + y_i * rotated_step.x, tl.y + y_i * rotated_step.y);
// Point rot_point(rot_origin.x, rot_origin.y);
// DPoint rot_delta(0.0, 0.0);
//
// Point previous = rot_origin;
//
// for (int x_i = 0; x_i <= (int) line_nb_steps; ++x_i)
// {
//
// Point const delta(rot_point.x - tl.x, rot_point.y - tl.y);
// DPoint src_rotated_point(src_tl.x + delta.x * src_delta_x.x + delta.y * src_delta_y.x,
// src_tl.y + delta.x * src_delta_x.y + delta.y * src_delta_y.y);
//
// rotate_pixel(src, *rotated, src_rotated_point, rot_point, src_limit, rot_limit);
//
// if (previous.x != rot_point.x && previous.y != rot_point.y)
// {
// int y_slope = rot_point.y > previous.y ? 1 : -1;
// int tmp_y = rot_point.y;
// rot_point.y = previous.y;
//
// src_rotated_point.x -= y_slope * src_delta_y.x;
// src_rotated_point.y -= y_slope * src_delta_y.y;
//
// rotate_pixel(src, *rotated, src_rotated_point, rot_point, src_limit, rot_limit);
//
// rot_point.y = tmp_y;
// }
//
// previous = rot_point;
//
// rot_delta.x += bresenham.x;
// rot_point.x = rot_origin.x + (int) rot_delta.x;
//
// rot_delta.y += bresenham.y;
// rot_point.y = rot_origin.y + (int) rot_delta.y;
// }
// }
DPoint const rot_origin_in_src_grid = get_mapped_point(*rotated, Point(0, 0), -rotation);
DPoint const rot_origin_in_src = convert_img_coord_precision(src, rot_origin_in_src_grid);
unsigned int const buffer_size = rotated->width * 3;
uint8_t buffer[buffer_size];
for (unsigned int y = 0; y < rotated->height; ++y)
{
memset(buffer, 0, buffer_size);
DPoint src_rotated_point(rot_origin_in_src.x + y * src_delta_y.x,
rot_origin_in_src.y + y * src_delta_y.y);
for (unsigned int x = 0; x < rotated->width; ++x)
{
if (src_rotated_point.x >= 0 && src_rotated_point.x < src.width
&& src_rotated_point.y >= 0 && src_rotated_point.y < src.height)
{
rotate_pixel(src, src_rotated_point, src_limit, rot_limit, buffer, x * 3);
}
src_rotated_point.x += src_delta_x.x;
src_rotated_point.y += src_delta_x.y;
}
memcpy(rotated->buffer + buffer_size * y, buffer, buffer_size);
}
return rotated;
}
//
//
// Tile rotation
//
template<unsigned int W, unsigned int H>
void rotate_pixel(TiledImage<W, H> const& src,
DPoint const& src_rotated_point,
uint8_t* rot_tile, unsigned int rot_index)
{
uint8_t const* src_index_1 = src.access_pixel((int) src_rotated_point.x, (int) src_rotated_point.y);
double x_delta = src_rotated_point.x - (int) src_rotated_point.x;
round_if_very_small(x_delta);
double y_delta = src_rotated_point.y - (int) src_rotated_point.y;
round_if_very_small(y_delta);
// special case if we can directly map the src to the dest
if (x_delta == 0 && y_delta == 0)
{
memcpy(&rot_tile[rot_index], src_index_1, 3 * sizeof (uint8_t));
return;
}
uint8_t const* src_index_2 = src.access_pixel((int) src_rotated_point.x + 1, (int) src_rotated_point.y);
uint8_t const* src_index_3 = src.access_pixel((int) src_rotated_point.x, (int) src_rotated_point.y + 1);
uint8_t const* src_index_4 = src.access_pixel((int) src_rotated_point.x + 1, (int) src_rotated_point.y + 1);
// FIXME: deal with image border
if (!src_index_1 || !src_index_2 || !src_index_3 || !src_index_4)
return;
// SIMD
__m128 const x_d = _mm_set_ps1(x_delta);
__m128 const inv_x_d = _mm_set_ps1(1 - x_delta);
__m128 top_left = _mm_set_ps(*src_index_1, *(src_index_1 + 1), *(src_index_1 + 2), 0.0);
__m128 top_right = _mm_set_ps(*src_index_2, *(src_index_2 + 1), *(src_index_2 + 2), 0.0);
top_left = _mm_mul_ps(top_left, inv_x_d);
top_right = _mm_mul_ps(top_right, x_d);
top_left = _mm_add_ps(top_left, top_right);
__m128 bottom_left = _mm_set_ps(*src_index_3, *(src_index_3 + 1), *(src_index_3 + 2), 0.0);
__m128 bottom_right = _mm_set_ps(*src_index_4, *(src_index_4 + 1), *(src_index_4 + 2), 0.0);
bottom_left = _mm_mul_ps(bottom_left, inv_x_d);
bottom_right = _mm_mul_ps(bottom_right, x_d);
bottom_left = _mm_add_ps(bottom_left, bottom_right);
__m128 const y_d = _mm_set_ps1(y_delta);
__m128 const inv_y_d = _mm_set_ps1(1 - y_delta);
top_left = _mm_mul_ps(top_left, inv_y_d);
bottom_left = _mm_mul_ps(bottom_left, y_d);
top_left = _mm_add_ps(top_left, bottom_left);
// convert float values to uint8_t
rot_tile[rot_index] = top_left[3];
rot_tile[rot_index + 1] = top_left[2];
rot_tile[rot_index + 2] = top_left[1];
}
template<unsigned int W, unsigned int H>
TiledImage<W, H>*
rotate(TiledImage<W, H> const& src, double angle)
{
double const rotation = (angle / 180.0f) * M_PI;
unsigned int w = 0;
unsigned int h = 0;
compute_output_size(src, rotation, w, h);
auto rotated = new TiledImage<W, H>(w, h);
DPoint src_origin = get_mapped_point(*rotated, Point(0, 0), -rotation);
DPoint src_delta_x = get_mapped_point(*rotated, Point(1, 0), -rotation);
DPoint src_delta_y = get_mapped_point(*rotated, Point(0, 1), -rotation);
src_delta_x.x = src_delta_x.x - src_origin.x;
src_delta_x.y = src_delta_x.y - src_origin.y;
round_if_very_small(src_delta_x.x);
round_if_very_small(src_delta_x.y);
src_delta_y.x = src_delta_y.x - src_origin.x;
src_delta_y.y = src_delta_y.y - src_origin.y;
round_if_very_small(src_delta_y.x);
round_if_very_small(src_delta_y.y);
DPoint const rot_origin_in_src_grid = get_mapped_point(*rotated, Point(0, 0), -rotation);
DPoint const rot_origin_in_src = convert_img_coord_precision(src, rot_origin_in_src_grid);
for (unsigned int y = 0; y < rotated->nb_row_tile; ++y)
{
for (unsigned int x = 0; x < rotated->nb_col_tile; ++x)
{
unsigned int const rot_tile_index = y * rotated->nb_col_tile + x;
for (unsigned int j = 0; j < H; ++j)
{
int const y_index = y * H + j;
int x_index = x * W;
DPoint src_rotated_point(rot_origin_in_src.x + x_index * src_delta_x.x + y_index * src_delta_y.x,
rot_origin_in_src.y + x_index * src_delta_x.y + y_index * src_delta_y.y);
for (unsigned int i = 0; i < W; ++i)
{
unsigned int const rot_index = (j * W + i) * 3;
if (src_rotated_point.x >= 0 && src_rotated_point.x < src.width
&& src_rotated_point.y >= 0 && src_rotated_point.y < src.height)
{
rotate_pixel(src, src_rotated_point,
rotated->tiles[rot_tile_index], rot_index);
}
src_rotated_point.x += src_delta_x.x;
src_rotated_point.y += src_delta_x.y;
}
}
}
}
return rotated;
}
//
//
// Check
//
bool check_points()
{
Image five(5, 5);
Point origin(0, 0);
DPoint d1 = convert_grid_coord(five, origin);
assert(d1.x == -2);
assert(d1.y == -2);
return true;
}
bool check_trigo()
{
Image square(500, 500);
double const ratio = compute_ratio(square);
double const sigma = 1.0e-2;
if (!fequal(ratio, 1 / 707.106, sigma))
{
cerr << __LINE__ << " | Invalid ratio: " << ratio << " != " << 1 / 707.106 << endl;
return false;
}
// Check that the origin of a square image is at sqrt(2) / 2
double const angle = convert_radian(square, Point(0, 0), ratio);
if (!fequal(angle, 3 * M_PI / 4, sigma))
{
cerr << __LINE__ << " | Invalid angle value: " << angle << " != " << 3 * M_PI / 4 << endl;
return false;
}
// Check that we can reverse the origin point.
DPoint const abs_reverse_point = convert_abs_coord(angle, ratio);
Point const reverse_point = convert_img_coord(square, abs_reverse_point);
if (!fequal(0.0, reverse_point.x, sigma)
|| !fequal(0.0, reverse_point.y, sigma))
{
cerr << __LINE__ << "Reverse origin fail" << endl;
cerr << " " << reverse_point << " != (0, 0)" << endl;
cerr << " abs point " << abs_reverse_point << endl;
return false;
}
// Check that when rotating the origin by 45 degrees
double const rotation = M_PI / 4; // 45 degrees
unsigned int w = 0;
unsigned int h = 0;
compute_output_size(square, rotation, w, h);
if (!fequal(w, square.width * sqrt(2), sigma * square.width)
|| !fequal(h, square.height * sqrt(2), sigma * square.height))
{
cerr << "Invalid rotated image dimensions " << w << " x " << h << endl;
cerr << " expected " << (int) ceil(square.width * sqrt(2)) << " x " << (int) ceil(square.height * sqrt(2)) << endl;
return false;
}
Image rotated(w, h);
DPoint const a_p45 = convert_abs_coord(angle + rotation, ratio);
Point const p45 = convert_img_coord(rotated, a_p45);
if (!fequal(0, p45.x, sigma))
{
cerr << __LINE__ << " > Rotation origin by 45 degrees:" << endl;
cerr << " invalid x value: " << p45.x << " != " << 0 << endl;
cerr << " absolute point: " << a_p45 << endl;
cerr << " relative point: " << p45 << endl;
return false;
}
if (!fequal(p45.y, (h - 1) / 2.0f, sigma))
{
cerr << __LINE__ << " > Rotation origin by 45 degrees:" << endl;
cerr << "Invalid y value: " << p45.y << " != " << (h - 1) / 2.0f << endl;
cerr << " absolute point: " << a_p45 << endl;
cerr << " relative point: " << p45 << endl;
return false;
}
// Polar coordinates
{
DPoint const d(-42.5, 37.5);
double angle = 0;
double dist = 0;
convert_abs_to_polar_coord(d, angle, dist);
DPoint const reversed = convert_polar_to_grid_coord(angle, dist);
if (!fequal(d.x, reversed.x, sigma)
|| !fequal(d.y, reversed.y, sigma))
{
cerr << __LINE__ << " > Reverse polar coordinates:" << endl;
cerr << reversed << " != " << d << endl;
cerr << "polar (" << angle << ", " << dist << ")" << endl;
return false;
}
}
return true;
}
bool check_90(string const& path)
{
Image const src(path);
Image const* rotated = rotate(src, 90);
for (unsigned int y = 0; y < rotated->height; ++y)
{
for (unsigned int x = 0; x < rotated->width; ++x)
{
unsigned rot_index = (y * rotated->width + x) * 3;
unsigned src_index = (x * src.width + (src.width - 1 - y)) * 3;
if (memcmp(&rotated->buffer[rot_index], &src.buffer[src_index], 3 * sizeof (uint8_t)) != 0)
{
Point r(x, y);
Point s((src.width - 1 - y), x);
cerr << __LINE__ << " | R: " << r << " != S:" << s << endl;
cerr << "R dim: " << rotated->width << " x " << rotated->height << endl;
cerr << "S dim: " << src.width << " x " << src.height << endl;
return false;
}
}
}
delete rotated;
return true;
}
//
//
// Main
//
string get_save_path(string const& base, unsigned int i)
{
stringstream filename;
//filename << "/tmp/";
filename << base << "_";
if (i < 100)
filename << "0";
if (i < 10)
filename << "0";
filename << i << ".ppm";
return filename.str();
}
int main(int argc, char* argv[])
{
if (argc < 2)
{
cout << "Usage: " << argv[0] << " image.ppm" << endl;
return 1;
}
bool perform_check = true;
if (perform_check)
{
if (!check_points())
return 1;
if (!check_trigo())
return 1;
if (!check_90(argv[1]))
{
cerr << __LINE__ << " | 90 degrees check failed" << endl << endl;
// return 1;
}
}
Image img(argv[1]);
TiledImage<32, 32> tiled_img(argv[1]);
for (double rotation = 0; rotation < 360; rotation += 45)
{
// No tile
auto const before = chrono::high_resolution_clock::now();
Image* const rotated = rotate(img, rotation);
auto const after = chrono::high_resolution_clock::now();
auto const duration_ms = std::chrono::duration_cast<std::chrono::milliseconds>(after - before);
// Tile
auto const before_tiled = chrono::high_resolution_clock::now();
auto const rotated_tiled = rotate(tiled_img, rotation);
auto const after_tiled = chrono::high_resolution_clock::now();
auto const duration_ms_tiled = std::chrono::duration_cast<std::chrono::milliseconds>(after_tiled - before_tiled);
cout << "rotate(" << rotation << "): " << duration_ms.count() << " ms" << endl;
cout << "tiled: " << duration_ms_tiled.count() << " ms" << endl;
cout << "speedup: " << (int) (((float) duration_ms.count() / duration_ms_tiled.count() - 1) * 100) << "%" << endl << endl;
rotated->save(get_save_path("rotated", rotation));
rotated_tiled->save(get_save_path("rotated_tiled", rotation));
delete rotated;
delete rotated_tiled;
}
return 0;
}