compute intersections

wip
Fabien Freling 2020-03-21 19:21:57 +01:00
parent 5774c3e488
commit b3eb24d329
1 changed files with 111 additions and 24 deletions

View File

@ -3,32 +3,52 @@ use piston_window::*;
use std::f64::consts::*;
#[derive(PartialEq, Debug)]
#[derive(Copy, Clone, PartialEq, Debug)]
struct Position {
x: f64,
y: f64,
}
struct Player {
pos: Position,
angle: f64, // radian or degree
impl Position {
pub fn distance(&self, other: Position) -> f64 {
((self.x - other.x).powi(2) + (self.y - other.y).powi(2)).sqrt()
}
pub fn distance_sqr(&self, other: Position) -> f64 {
(self.x - other.x).powi(2) + (self.y - other.y.powi(2))
}
}
type Degree = f64;
type Radian = f64;
struct Player {
pos: Position,
angle: Degree,
}
#[derive(Copy, Clone, PartialEq)]
pub enum Tile {
Empty,
Wall,
}
pub struct Level {
pub width: u16,
pub height: u16,
pub width: usize,
pub height: usize,
pub tiles: Vec<Tile>,
}
impl Level {
pub fn contains(&self, pos: Position) -> bool {
0.0 <= pos.x && pos.x <= self.width as f64 && 0.0 <= pos.y && pos.y <= self.height as f64
}
}
pub struct Engine {
w: f64,
h: f64,
horiz_fov: f64,
horiz_fov: Degree,
player: Player,
level: Level,
}
@ -51,25 +71,77 @@ impl Engine {
}
}
fn closest_point(pos: &Position, angle: f64) -> (Tile, Position) {
// First let's find the closest intersections with the grid
let dx = angle.cos();
let x_dist = if dx > 0.0 { 1.0 - pos.x.fract() } else { pos.x.fract() };
let x_relative_dist = x_dist / dx.abs();
let dy = angle.sin();
let y_dist = if dy > 0.0 { 1.0 - pos.y.fract() } else { pos.y.fract() };
let y_relative_dist = y_dist / dy.abs();
if x_relative_dist > y_relative_dist {
// first grid hit is horizontal line
} else {
// first grid hit is vertical line
fn closest_point(level: &Level, pos: &Position, angle: Radian) -> (Tile, Position) {
let (y_step, x_step) = match angle {
0.0 => (0.0, std::f64::INFINITY),
90.0 => (std::f64::INFINITY, 0.0),
180.0 => (0.0, std::f64::NEG_INFINITY),
270.0 => (std::f64::NEG_INFINITY, 0.0),
x if (0.0..(PI * 0.5)).contains(&x) => (angle.tan(), ((PI / 2.0) - angle).tan()),
x if ((PI * 0.5)..PI).contains(&x) => ((PI - x).tan(), -((x - (PI / 2.0)).tan())),
x if (PI..(PI * 1.5)).contains(&x) => (-((x - PI).tan()), -(((PI * 1.5) - x).tan())),
x if ((PI * 1.5)..(PI * 2.0)).contains(&x) => (((PI * 2.0) - x).tan(), -((x - (PI * 1.5)).tan())),
_ => panic!("Invalid angle value {}.", angle),
};
let (x_remain, y_remain) = match (x_step, y_step) {
(x, y) if x >= 0.0 && y >= 0.0 => (1.0 - pos.x.fract(), 1.0 - pos.y.fract()),
(x, y) if x <= 0.0 && y >= 0.0 => (-pos.x.fract(), 1.0 - pos.y.fract()),
(x, y) if x >= 0.0 && y <= 0.0 => (1.0 - pos.x.fract(), -pos.y.fract()),
(x, y) if x <= 0.0 && y <= 0.0 => (-pos.x.fract(), -pos.y.fract()),
_ => panic!("Invalid steps"),
};
let x_dist_factor = x_remain / x_step;
let y_dist_factor = y_remain / y_step;
let mut x_candidate = Position {
x: pos.x + x_remain, // x_remain = x_step * x_dist_factor
y: pos.y + y_step * x_dist_factor,
};
let mut y_candidate = Position {
x: pos.x + x_step * y_dist_factor,
y: pos.y + y_remain, // y_remain = y_step * y_dist_factor
};
let mut next_point: Position = *pos;
let mut tile = Tile::Empty;
while tile == Tile::Empty && level.contains(next_point) {
if next_point.distance(x_candidate) < next_point.distance(y_candidate) {
next_point = x_candidate;
x_candidate = Position {
x: x_candidate.x + x_step.signum(),
y: x_candidate.y + y_step,
};
} else {
next_point = y_candidate;
y_candidate = Position {
x: y_candidate.x + x_step,
y: y_candidate.y + y_step.signum(),
};
}
tile = if next_point.x.fract() == 0.0 {
let x_index = (next_point.x.trunc() + x_step.signum()) as usize;
assert!(x_index < level.width);
let y_index = next_point.y.trunc() as usize;
assert!(y_index < level.height);
let index: usize = x_index + y_index * level.width;
level.tiles[index]
} else {
let x_index = next_point.x.trunc() as usize;
assert!(x_index < level.width);
let y_index = (next_point.y.trunc() + y_step.signum()) as usize;
assert!(y_index < level.height);
let index: usize = x_index + y_index * level.width;
level.tiles[index]
};
}
// see Game Engine Black Book
let xstep = angle.tan();
let ystep = ((PI / 2.0) - angle).tan();
assert!(tile != Tile::Empty);
(Tile::Empty, Position {x: 2., y: 2.})
(tile, next_point)
}
pub fn render(&mut self, context: Context, graphics: &mut G2d) {
@ -99,7 +171,22 @@ impl Engine {
let width = self.w as i32;
for n in 0..width {
// cast a ray
let (tile, pos) = Engine::closest_point(&self.player.pos, ray_angle);
let ray_radian = ray_angle.to_radians();
let (tile, pos) = Engine::closest_point(&self.level, &self.player.pos, ray_radian);
let distance = self.player.pos.distance(pos);
let player_space_distance = (self.player.pos.x - pos.x).abs() * ray_radian.cos()
- (self.player.pos.y - pos.y).abs() * ray_radian.sin();
if tile == Tile::Wall {
println!("ray: {}, wall at {:?}, distance: {}", n, pos, distance);
let wall_height = (self.h / (distance * 3.0)).min(self.h);
let wall_color = [0.9, 0.2, 0.2, 1.0];
println!("wall height: {}", wall_height);
rectangle(wall_color,
[n as f64, (self.h - wall_height) / 2.0, (n + 1) as f64, wall_height],
context.transform,
graphics);
};
// see what wall it hits
// compute wall height
// draw wall portion