rustenstein/src/engine.rs

252 lines
8.2 KiB
Rust

extern crate piston_window;
use piston_window::*;
use std::f64::consts::*;
#[derive(Copy, Clone, PartialEq, Debug)]
struct Position {
x: f64,
y: f64,
}
impl Position {
pub fn distance(&self, other: Position) -> f64 {
((self.x - other.x).powi(2) + (self.y - other.y).powi(2)).sqrt()
}
pub fn distance_sqr(&self, other: Position) -> f64 {
(self.x - other.x).powi(2) + (self.y - other.y.powi(2))
}
}
type Degree = f64;
type Radian = f64;
#[derive(Debug)]
struct Player {
pos: Position,
angle: Degree,
}
#[derive(Copy, Clone, PartialEq)]
pub enum Tile {
Empty,
Wall,
}
pub struct Level {
pub width: usize,
pub height: usize,
pub tiles: Vec<Tile>,
}
#[derive(Copy, Clone, PartialEq, Debug)]
pub enum Movement {
Forward,
Backward,
TurnLeft,
TurnRight,
}
impl Level {
pub fn contains(&self, pos: Position) -> bool {
0.0 <= pos.x && pos.x <= self.width as f64 && 0.0 <= pos.y && pos.y <= self.height as f64
}
}
pub struct Engine {
w: f64,
h: f64,
horiz_fov: Degree,
player: Player,
level: Level,
inputs: Vec<Movement>,
}
impl Engine {
pub fn new(size: Size) -> Engine {
Engine {
w: size.width as f64,
h: size.height as f64,
horiz_fov: 90.,
player: Player {
pos: Position { x: 2., y: 2. },
angle: 90.,
},
level: Level {
width: 0,
height: 0,
tiles: vec![],
},
inputs: [].to_vec(),
}
}
fn closest_point(level: &Level, pos: &Position, angle: Radian) -> (Tile, Position) {
assert!((0.0..(PI * 2.0)).contains(&angle));
let (y_step, x_step) = match angle {
x if x == 0.0 => (0.0, std::f64::INFINITY),
x if x == PI * 0.5 => (std::f64::INFINITY, 0.0),
x if x == PI => (0.0, std::f64::NEG_INFINITY),
x if x == PI * 1.5 => (std::f64::NEG_INFINITY, 0.0),
x if (0.0..(PI * 0.5)).contains(&x) => (angle.tan(), ((PI / 2.0) - angle).tan()),
x if ((PI * 0.5)..PI).contains(&x) => ((PI - x).tan(), -((x - (PI / 2.0)).tan())),
x if (PI..(PI * 1.5)).contains(&x) => (-((x - PI).tan()), -(((PI * 1.5) - x).tan())),
x if ((PI * 1.5)..(PI * 2.0)).contains(&x) => (((PI * 2.0) - x).tan(), -((x - (PI * 1.5)).tan())),
_ => panic!("Invalid angle value {}.", angle),
};
let (x_remain, y_remain) = match (x_step, y_step) {
(x, y) if x >= 0.0 && y >= 0.0 => (1.0 - pos.x.fract(), 1.0 - pos.y.fract()),
(x, y) if x <= 0.0 && y >= 0.0 => (-pos.x.fract(), 1.0 - pos.y.fract()),
(x, y) if x >= 0.0 && y <= 0.0 => (1.0 - pos.x.fract(), -pos.y.fract()),
(x, y) if x <= 0.0 && y <= 0.0 => (-pos.x.fract(), -pos.y.fract()),
_ => panic!("Invalid steps"),
};
let x_dist_factor = x_remain / x_step;
let y_dist_factor = y_remain / y_step;
let mut x_candidate = Position {
x: pos.x + x_remain, // x_remain = x_step * x_dist_factor
y: pos.y + y_step * x_dist_factor,
};
let mut y_candidate = Position {
x: pos.x + x_step * y_dist_factor,
y: pos.y + y_remain, // y_remain = y_step * y_dist_factor
};
let mut next_point: Position = *pos;
let mut tile = Tile::Empty;
while tile == Tile::Empty && level.contains(next_point) {
if next_point.distance(x_candidate) < next_point.distance(y_candidate) {
next_point = x_candidate;
x_candidate = Position {
x: x_candidate.x + x_step.signum(),
y: x_candidate.y + y_step,
};
} else {
next_point = y_candidate;
y_candidate = Position {
x: y_candidate.x + x_step,
y: y_candidate.y + y_step.signum(),
};
}
tile = if next_point.x.fract() == 0.0 {
let x_index = (next_point.x.trunc() + x_step.signum()) as usize;
assert!(x_index < level.width);
let y_index = next_point.y.trunc() as usize;
assert!(y_index < level.height);
let index: usize = x_index + y_index * level.width;
level.tiles[index]
} else {
let x_index = next_point.x.trunc() as usize;
assert!(x_index < level.width);
let y_index = (next_point.y.trunc() + y_step.signum()) as usize;
assert!(y_index < level.height);
let index: usize = x_index + y_index * level.width;
level.tiles[index]
};
}
assert!(tile != Tile::Empty);
(tile, next_point)
}
pub fn render(&mut self, context: Context, graphics: &mut G2d) {
clear([1.0; 4], graphics);
// Ceiling
let ceiling_color = [0.3, 0.3, 0.3, 1.0];
rectangle(ceiling_color,
[0.0, 0.0, self.w, self.h / 2.0],
context.transform,
graphics);
// Floor
let floor_color = [0.5, 0.5, 0.5, 1.0];
rectangle(floor_color,
[0.0, self.h / 2.0, self.w, self.h / 2.0],
context.transform,
graphics);
let left = self.player.angle + (self.horiz_fov / 2.0);
let right = self.player.angle - (self.horiz_fov / 2.0);
let step = self.horiz_fov / self.w;
let mut ray_angle = left;
let width = self.w as i32;
for n in 0..width {
let ray_angle = ((left - (n as f64) * step) + 360.0) % 360.0;
let ray_radian = ray_angle.to_radians();
//println!("degree: {} -> radian: {}", ray_angle, ray_radian);
let (tile, pos) = Engine::closest_point(&self.level, &self.player.pos, ray_radian);
let distance = self.player.pos.distance(pos);
let player_space_distance = (self.player.pos.x - pos.x).abs() * self.player.angle.to_radians().cos()
- (self.player.pos.y - pos.y).abs() * self.player.angle.to_radians().sin();
if tile == Tile::Wall {
//println!("ray: {}, wall at {:?}, distance: {}", n, pos, distance);
let wall_height = (self.h / (distance * 3.0)).min(self.h);
let wall_color = [0.2, 0.2, 0.9, 1.0];
//println!("wall height: {}", wall_height);
rectangle(wall_color,
[n as f64, (self.h - wall_height) / 2.0, (n + 1) as f64, wall_height],
context.transform,
graphics);
};
}
}
pub fn load_level(&mut self, level: Level) {
self.level = level;
}
pub fn add_movement(&mut self, movement: Movement) {
self.inputs.push(movement);
}
pub fn update(&mut self, dt: f64) {
for input in &self.inputs {
match input {
Movement::Forward => {
self.player.pos.x += self.player.angle.to_radians().cos() * dt;
self.player.pos.y += self.player.angle.to_radians().sin() * dt;
}
Movement::Backward => {
self.player.pos.x -= self.player.angle.to_radians().cos() * dt;
self.player.pos.y -= self.player.angle.to_radians().sin() * dt;
},
Movement::TurnLeft => {
self.player.angle += 90.0 * dt;
self.player.angle = (self.player.angle + 360.0) % 360.0;
}
Movement::TurnRight => {
self.player.angle -= 90.0 * dt;
self.player.angle = (self.player.angle + 360.0) % 360.0;
}
}
}
self.inputs.clear();
println!("player: {:?}", &self.player);
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn closest_point() {
let origin = super::Position { x: 2.2, y: 2.3 };
let angle = 0.;
let closest = Engine::closest_point(origin, angle);
assert_eq!(closest, super::Position { x: 3.0, y: 2.3 });
}
}